| |Definition=ἡ, <span class="sense"><span class="bld">A</span> [[juxtaposition]], [[comparison]], τῶν βίων <span class="bibl">Pl.<span class="title">Phlb.</span>33b</span>; παραβολὴ καὶ [[σύγκρισις]] <span class="bibl">Plb.1.2.2</span>; [[ἐν παραβολῇ]] = [[by juxtaposition]], <span class="bibl">Arist.<span class="title">Top.</span>104a28</span>, cf. <span class="bibl">157a14</span>; ἐκ παραβολῆς <span class="bibl">Id.<span class="title">Rh.</span>1420a4</span>. </span><span class="sense"><span class="bld">2</span> [[comparison]], [[illustration]], [[analogy]], τὴν παραβολὴν ἀπρεπῆ πεποιῆσθαι <span class="bibl">Isoc.12.227</span>; παραβολὴ δὲ τὰ Σωκρατικά = comparison is illustrated by the sayings of Socrates (distd. from [[λόγος]], [[apologue]]) <span class="bibl">Arist.<span class="title">Rh.</span>1393b3</span>; ἐκ τῶν θηρίων ποιεῖσθαι τὴν παραβολὴν <span class="bibl">Id.<span class="title">Pol.</span>1264b4</span>. </span><span class="sense"><span class="bld">3</span> [[NT]], [[parable]], Ev.Marc.12.1, al.; [[type]], Ep. Hebr.9.9, 11.19. </span><span class="sense"><span class="bld">4</span> [[by-word]], [[proverb]], <span class="bibl">LXX <span class="title">Ez.</span>18.2</span>, <span class="bibl"><span class="title">Ev.Luc.</span>4.23</span>; in bad sense, εἰς παραβολὴν ἐν τοῖς ἔθνεσι = an example for the Gentiles <span class="bibl">LXX <span class="title">Ps.</span>43(44).14</span>, cf. <span class="bibl"><span class="title">Wi.</span>5.3</span>. </span><span class="sense"><span class="bld">5</span> [[objection]] to an argument, Phld.<span class="title">Rh.</span>1.5 S. </span><span class="sense"><span class="bld">II</span> [[moving]] [[side by side]], <b class="b3">ἐκ παραβολῆς [νεῶν] μάχεσθαι</b> to [[fight]] a [[sea]]-[[fight]] [[broadside]] to [[broadside]], <span class="bibl">Plb.15.2.13</span>, cf. <span class="bibl">D.S.14.60</span>. </span><span class="sense"><span class="bld">III</span> [[sidelong direction]], [[obliquity]], διὰ πολλῶν ἑλιγμῶν καὶ παραβολῶν <span class="bibl">Plu.<span class="title">Arat.</span>22</span>. </span><span class="sense"><span class="bld">IV</span> [[venture]], <span class="bibl">D.S.27.17</span>, [[varia lectio|v.l.]] in <span class="bibl">Th.1.131</span>. </span><span class="sense"><span class="bld">V</span> Astron., [[conjunction]], παραβολαὶ ἀλλήλων <span class="bibl">Pl.<span class="title">Ti.</span>40c</span>, cf. <span class="bibl">Procl. <span class="title">in Ti.</span>3.146</span> D., <span class="bibl">Plot.3.1.5</span>, <span class="bibl">Iamb.<span class="title">Myst.</span>9.4</span>: also f.l. for [[περιβολή]], τοῦ ἡλίου <span class="bibl">Max.Tyr.17.9</span>. </span><span class="sense"><span class="bld">VI</span> Math., [[division]], opp. [[multiplication]], <span class="bibl">Dioph.4.22</span>; [[quotient]], ib.<span class="bibl">10</span>: hence, [[section]] produced by [[division]] of a [[line]], <span class="bibl">Nicom.<span class="title">Ar.</span>2.27</span>. </span><span class="sense"><span class="bld">VII</span> Geom., [[application]], παραβολὴ τῶν χωρίων Pythag. ap. <span class="bibl">Procl.<span class="title">in Euc.</span>p.419</span> F.; <b class="b3">τὰ ἐκ τῆς παραβολῆς γενηθέντα σημεῖα</b>, of the foci of an [[ellipse]] or [[hyperbola]], points found by [[application]] of an area to the axis, <span class="bibl">Apollon.Perg.<span class="title">Con.</span>3.45</span>, cf. <span class="bibl">48</span>. </span><span class="sense"><span class="bld">2</span> [[parabola]], because the [[square]] on the [[ordinate]] is [[equal]] to a [[rectangle]] whose [[height]] is [[equal]] to the [[abscissa]] applied to the [[parameter]], ib.<span class="bibl">1.11</span>. </span><span class="sense"><span class="bld">VIII</span> = [[παράβολον]] (v. [[παράβολος]] III. ''1''), <span class="bibl">Arist.<span class="title">Oec.</span>1348b13</span> (vv. ll. [[παράβολον]], [[παραβόλιον]]), <span class="title">OGI</span>41.5 (Samos, iii B. C., pl.). <span class="bibl"><span class="title">PPetr.</span>3p.232</span> (iii B. C., pl.).</span> | | |Definition=ἡ,<br><span class="bld">A</span> [[juxtaposition]], [[comparison]], τῶν βίων Pl.Phlb.33b; παραβολὴ καὶ [[σύγκρισις]] Plb.1.2.2; [[ἐν παραβολῇ]] = [[by juxtaposition]], Arist.Top.104a28, cf. 157a14; ἐκ παραβολῆς Id.Rh.1420a4.<br><span class="bld">2</span> [[comparison]], [[illustration]], [[analogy]], τὴν παραβολὴν ἀπρεπῆ πεποιῆσθαι Isoc.12.227; παραβολὴ δὲ τὰ Σωκρατικά = comparison is illustrated by the sayings of Socrates (distd. from [[λόγος]], [[apologue]]) Arist.Rh.1393b3; ἐκ τῶν θηρίων ποιεῖσθαι τὴν παραβολὴν Id.Pol.1264b4.<br><span class="bld">3</span> [[NT]], [[parable]], Ev.Marc.12.1, al.; [[type]], Ep. Hebr.9.9, 11.19.<br><span class="bld">4</span> [[by-word]], [[proverb]], LXX Ez.18.2, Ev.Luc.4.23; in bad sense, ἔθου ἡμᾶς εἰς παραβολὴν ἐν τοῖς ἔθνεσι = you made us into a byword among the nations LXX Ps.43(44).14, cf. Wi.5.3.<br><span class="bld">5</span> [[objection]] to an argument, Phld.Rh.1.5 S.<br><span class="bld">II</span> [[moving]] [[side by side]], ἐκ παραβολῆς [νεῶν] μάχεσθαι to [[fight]] a [[sea]]-[[fight]] [[broadside]] to [[broadside]], Plb.15.2.13, cf. D.S.14.60.<br><span class="bld">III</span> [[sidelong direction]], [[obliquity]], διὰ πολλῶν ἑλιγμῶν καὶ παραβολῶν Plu.Arat.22.<br><span class="bld">IV</span> [[venture]], D.S.27.17, [[varia lectio|v.l.]] in Th.1.131.<br><span class="bld">V</span> Astron., [[conjunction]], παραβολαὶ ἀλλήλων Pl.Ti.40c, cf. Procl. in Ti.3.146 D., Plot.3.1.5, Iamb.Myst.9.4: also f.l. for [[περιβολή]], τοῦ ἡλίου Max.Tyr.17.9.<br><span class="bld">VI</span> Math., [[division]], opp. [[multiplication]], Dioph.4.22; [[quotient]], ib.10: hence, [[section]] produced by [[division]] of a [[line]], Nicom.Ar.2.27.<br><span class="bld">VII</span> Geom., [[application]], παραβολὴ τῶν χωρίων Pythag. ap. Procl.in Euc.p.419 F.; τὰ ἐκ τῆς παραβολῆς γενηθέντα σημεῖα = the points resulting from the application of axes to a surface, of the foci of an [[ellipse]] or [[hyperbola]], points found by [[application]] of an area to the axis, Apollon.Perg.Con.3.45, cf. 48.<br><span class="bld">2</span> [[parabola]], because the [[square]] on the [[ordinate]] is [[equal]] to a [[rectangle]] whose [[height]] is [[equal]] to the [[abscissa]] applied to the [[parameter]], ib.1.11.<br><span class="bld">VIII</span> = [[παράβολον]] (v. [[παράβολος]] III. ''1''), Arist.Oec.1348b13 (vv. ll. [[παράβολον]], [[παραβόλιον]]), OGI41.5 (Samos, iii B. C., pl.). PPetr.3p.232 (iii B. C., pl.). |