γεωμετρικός: Difference between revisions

m
Text replacement - "<b class="b2">([\w]+)<\/b>" to "$1"
(nl)
m (Text replacement - "<b class="b2">([\w]+)<\/b>" to "$1")
Line 8: Line 8:
|Transliteration C=geometrikos
|Transliteration C=geometrikos
|Beta Code=gewmetriko/s
|Beta Code=gewmetriko/s
|Definition=ή, όν, <span class="sense"><p>&nbsp;&nbsp;&nbsp;<span class="bld">A</span> <b class="b2">of</b> or <b class="b2">for geometry, geometrical</b>, ἀριθμός <span class="bibl">Pl.<span class="title">R.</span>546c</span>, etc.; ἰσότης <span class="bibl">Id.<span class="title">Grg.</span>508a</span>; ἀναλογία <span class="bibl">Arist.<span class="title">EN</span>1131b13</span>; <b class="b3">μεσότης</b> Theo Sm.<span class="bibl">p.106</span> H., etc. (cf. [[γαμετρικός]]) ; ἁρμονία <span class="bibl">Nicom.<span class="title">Ar.</span>2.26</span>; θεωρήματα Plu.2.720a (Sup.); <b class="b3">γεωμετρική</b> (sc. <b class="b3">τέχνη</b>), <b class="b2">geometry</b>, <span class="bibl">Pl.<span class="title">Grg.</span>450d</span>, <span class="bibl">Nicom.Com.1.18</span>; <b class="b3">τὰ -κά</b> title of work on <b class="b2">geometry</b>, <span class="bibl">Democr.11n</span>, cf. <span class="bibl">Arist.<span class="title">APo.</span>79a9</span>. Adv. <b class="b3">-κῶς</b> <b class="b2">by a rigidly deductive proof</b>, <span class="bibl">Procl.<span class="title">in Prm.</span>p.897</span> S., Id.<span class="title">in Ti.</span>1.345 D.: <b class="b3">γ</b>. <b class="b2">refellere</b>, prove wrong <b class="b2">to demonstration</b>, <span class="bibl">Cic.<span class="title">Att.</span>12.5.3</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">II</span> <b class="b2">skilled in geometry</b>, <span class="bibl">Pl.<span class="title">R.</span>511d</span>, Plu.2.579b, <span class="bibl">Arist.<span class="title">Pol.</span> 1282a9</span>; <b class="b3">γ. Βριάρεως</b>, of Archimedes, Id.<span class="title">Marc.</span>17: Comp. -ώτερος <span class="bibl">Ph.1.621</span>. Adv. -κῶς <span class="bibl">Arist.<span class="title">Top.</span>161a35</span>, <span class="bibl">Str.2.1.41</span>, Plu.2.643c.</span>
|Definition=ή, όν, <span class="sense"><p>&nbsp;&nbsp;&nbsp;<span class="bld">A</span> [[of]] or <b class="b2">for geometry, geometrical</b>, ἀριθμός <span class="bibl">Pl.<span class="title">R.</span>546c</span>, etc.; ἰσότης <span class="bibl">Id.<span class="title">Grg.</span>508a</span>; ἀναλογία <span class="bibl">Arist.<span class="title">EN</span>1131b13</span>; <b class="b3">μεσότης</b> Theo Sm.<span class="bibl">p.106</span> H., etc. (cf. [[γαμετρικός]]) ; ἁρμονία <span class="bibl">Nicom.<span class="title">Ar.</span>2.26</span>; θεωρήματα Plu.2.720a (Sup.); <b class="b3">γεωμετρική</b> (sc. <b class="b3">τέχνη</b>), [[geometry]], <span class="bibl">Pl.<span class="title">Grg.</span>450d</span>, <span class="bibl">Nicom.Com.1.18</span>; <b class="b3">τὰ -κά</b> title of work on [[geometry]], <span class="bibl">Democr.11n</span>, cf. <span class="bibl">Arist.<span class="title">APo.</span>79a9</span>. Adv. <b class="b3">-κῶς</b> <b class="b2">by a rigidly deductive proof</b>, <span class="bibl">Procl.<span class="title">in Prm.</span>p.897</span> S., Id.<span class="title">in Ti.</span>1.345 D.: <b class="b3">γ</b>. [[refellere]], prove wrong <b class="b2">to demonstration</b>, <span class="bibl">Cic.<span class="title">Att.</span>12.5.3</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">II</span> <b class="b2">skilled in geometry</b>, <span class="bibl">Pl.<span class="title">R.</span>511d</span>, Plu.2.579b, <span class="bibl">Arist.<span class="title">Pol.</span> 1282a9</span>; <b class="b3">γ. Βριάρεως</b>, of Archimedes, Id.<span class="title">Marc.</span>17: Comp. -ώτερος <span class="bibl">Ph.1.621</span>. Adv. -κῶς <span class="bibl">Arist.<span class="title">Top.</span>161a35</span>, <span class="bibl">Str.2.1.41</span>, Plu.2.643c.</span>
}}
}}
{{pape
{{pape