3,277,114
edits
m (Text replacement - "(?s)(==Wikipedia EN==)(\n)(.*)(\n[{=])" to "{{wkpen |wketx=$3 }}$4") |
mNo edit summary |
||
Line 1: | Line 1: | ||
{{wkpen | {{wkpen | ||
|wketx=[[File:Parallelogram.svg|thumb|Parallelogram|alt=Parallelogram.svg]] | |wketx=[[File:Parallelogram.svg|thumb|Parallelogram|alt=Parallelogram.svg]] | ||
In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations. | In Euclidean geometry, a [[parallelogram]] is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations. | ||
}} | }} | ||
{{pape | {{pape | ||
|ptext=[[https://www.translatum.gr/images/pape/pape-02-0488.png Seite 488]] τό, das Parallelogramm, eine Figur, die von vier Linien eingeschlossen ist, deren zwei und zwei einander gleichlaufen, Euclid. u. A. – Adjectivisch bei Plut. adv. Stoic. 39, wie [[παραλληλόγραμμον]] [[σχῆμα]] Strab. | |ptext=[[https://www.translatum.gr/images/pape/pape-02-0488.png Seite 488]] τό, das [[Parallelogramm]], eine Figur, die von vier Linien eingeschlossen ist, deren zwei und zwei einander gleichlaufen, Euclid. u. A. – Adjectivisch bei Plut. adv. Stoic. 39, wie [[παραλληλόγραμμον]] [[σχῆμα]] Strab. | ||
}} | }} | ||
{{elru | {{elru |