3,277,700
edits
m (Text replacement - "<span class="sense"><span class="bld">A<\/span> (?s)(?!.*<span class="bld">)(.*)(<\/span>)(\n}})" to "$1$3") |
m (Text replacement - "(?s)({{LSJ.*}}\n)({{.*}}\n)({{DGE.*}}\n)" to "$1$3$2") |
||
Line 9: | Line 9: | ||
|Beta Code=a)/mesos | |Beta Code=a)/mesos | ||
|Definition=ον, <b class="b2">immediate:</b> <b class="b3">ἄμεσα καὶ ἀναπόδεικτα</b>, of propositions [[that cannot be proved syllogistically by means of a middle term]], <span class="bibl">Arist.<span class="title">APr.</span> 68b30</span>, <span class="bibl"><span class="title">APo.</span>72b19</span>, etc.; <b class="b3">τὰ ἄ. τῶν ἐναντίων</b> [[direct]] opposites, <span class="bibl">Plot.6.3.20</span>. Adv. ἀμέσως [[immediately]], <span class="bibl">Olymp. <span class="title">in Phlb.</span>p.256</span> S., <span class="bibl">Alex.Aphr. <span class="title">in Metaph.</span>162.19</span>, <span class="bibl">Procl.<span class="title">Inst.</span>30</span>, dub. in Phld. <span class="title">Herc.</span>1251.3. ἀμεσότης, τητος, ἡ, [[immediacy]], <span class="bibl">Eustr.<span class="title">in APo.</span>176.4</span>. ἀμέσω· [[ὠμοπλάται]], Hsch. (cf. Lat. [[umerus]], Goth. [[ams-]]). | |Definition=ον, <b class="b2">immediate:</b> <b class="b3">ἄμεσα καὶ ἀναπόδεικτα</b>, of propositions [[that cannot be proved syllogistically by means of a middle term]], <span class="bibl">Arist.<span class="title">APr.</span> 68b30</span>, <span class="bibl"><span class="title">APo.</span>72b19</span>, etc.; <b class="b3">τὰ ἄ. τῶν ἐναντίων</b> [[direct]] opposites, <span class="bibl">Plot.6.3.20</span>. Adv. ἀμέσως [[immediately]], <span class="bibl">Olymp. <span class="title">in Phlb.</span>p.256</span> S., <span class="bibl">Alex.Aphr. <span class="title">in Metaph.</span>162.19</span>, <span class="bibl">Procl.<span class="title">Inst.</span>30</span>, dub. in Phld. <span class="title">Herc.</span>1251.3. ἀμεσότης, τητος, ἡ, [[immediacy]], <span class="bibl">Eustr.<span class="title">in APo.</span>176.4</span>. ἀμέσω· [[ὠμοπλάται]], Hsch. (cf. Lat. [[umerus]], Goth. [[ams-]]). | ||
}} | |||
{{DGE | |||
|dgtxt=-ον<br />fil.<br /><b class="num">I</b> <b class="num">1</b>[[que carece de término medio]], [[inmediato]] de proposiciones o premisas, etc. ἔστι δὲ ὁ τοιοῦτος συλλογισμὸς τῆς πρώτης καὶ ἀμέσου προτάσεως Arist.<i>APr</i>.68<sup>b</sup>30, cf. 48<sup>a</sup>33, 66<sup>a</sup>37, <i>APo</i>.95<sup>b</sup>22, πάντα ἀξιώματα ὡς ἄμεσα καὶ αὐτοφανῆ παραδοτέον Procl.<i>in Euc</i>.195.18, ἄ. [[διαίρεσις]] Simp.<i>in Cael</i>.227.33.<br /><b class="num">2</b> c. ἐναντία [[opuestos inmediatos]], [[sin término medio]] τὸ γὰρ νοσεῖν καὶ τὸ ὑγιαίνειν καὶ τὸ ἄρτιον καὶ τὸ περιττὸν ἐναντία ἄμεσα δοκεῖ Simp.<i>in Cael</i>.331.31, οὔτε γὰρ τῶν ἀμέσων ἐναντίων ἔστι τι μεταξύ Simp.<i>in Cael</i>.331.28<br /><b class="num">•</b>de aquí subst. τὰ ἄμεσα [[contrarios]], [[opuestos que excluyen un término intermedio]] ἡμεῖς δέ φαμεν οὔτε πᾶσαν ἐπιστήμην ἀποδεικτικὴν εἶναι, ἀλλὰ τὴν τῶν ἀμέσων ἀναπόδεικτον Arist.<i>APo</i>.72<sup>b</sup>19, τῶν ἀμέσων ἡ θατέρου [[ἄρσις]] la abolición de uno de los contrarios</i> Luc.<i>Hist.Cons</i>.32, ἐπὶ τὰ ἄμεσα <βλέποντες> ποιούμεθα τὴν σημασίαν Chrysipp.<i>Stoic</i>.2.50.5, πάλιν τὰ ἄμεσα ἐκφεύξεται se nos escaparán de nuevo los contrarios</i> Plot.6.3.20.<br /><b class="num">II</b> adv. -ως [[directa]], [[inmediatamente]], [[sin término medio]] ἡ φρόνησις τῇ ἀφροσύνῃ ἀμέσως ἐναντία λέγεται Chrysipp.<i>Stoic</i>.2.50.12, cf. 2.50.3, ἄτομα λέγει νῦν τὰ ἀμέσως ὑπάρχοντα Alex.Aphr.<i>in Metaph</i>.162.19, cf. <i>Pr</i>.1.53, πᾶν τὸ ἀπό τινος παραγόμενον ἀμέσως todo lo que procede inmediatamente de algo</i> Procl.<i>Inst</i>.30, cf. 38, <i>in Euc</i>.265.24. | |||
}} | }} | ||
{{pape | {{pape | ||
Line 18: | Line 21: | ||
{{bailly | {{bailly | ||
|btext=ος, ον :<br />immédiat.<br />'''Étymologie:''' [[ἀ]], [[μέσος]]. | |btext=ος, ον :<br />immédiat.<br />'''Étymologie:''' [[ἀ]], [[μέσος]]. | ||
}} | }} | ||
{{grml | {{grml |