ἀντιστροφή: Difference between revisions

m
Text replacement - "<b class="b2">([\w]+ [\w]+)<\/b>" to "$1"
m (Text replacement - "<b class="b2">([\w]+ [\w]+ [\w]+ [\w]+ [\w]+ [\w]+ [\w]+)<\/b>" to "$1")
m (Text replacement - "<b class="b2">([\w]+ [\w]+)<\/b>" to "$1")
Line 8: Line 8:
|Transliteration C=antistrofi
|Transliteration C=antistrofi
|Beta Code=a)ntistrofh/
|Beta Code=a)ntistrofh/
|Definition=ἡ, <span class="sense"><p>&nbsp;&nbsp;&nbsp;<span class="bld">A</span> <b class="b2">a turning about</b>: </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">I</span> in choruses and dances, <b class="b2">strophic correspondence</b>, <span class="bibl">D.H.<span class="title">Comp.</span>25</span>; in later writers, = [[ἀντίστροφος]], [[ἡ]] (q.v.), Sch.<span class="bibl">Ar.<span class="title">Nu.</span>595</span>,al. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">II</span> Rhet., [[repetition of closing words in successive members]], Phld.<span class="title">Rh.</span>1.195 S., <span class="bibl">Hermog.<span class="title">Id.</span>1.12</span>, cf, <span class="bibl">2.1</span>, <span class="bibl">Eust.945.60</span>; ἀ. τὸ ἐναντίον τῆς ἐπαναφορᾶς <span class="bibl">Alex.<span class="title">Fig.</span>2.4</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">2</span> [[inversion]], of construction, e.g. <b class="b3">ἠχῶν ἔπεσα</b> for πεσὼν ἤχησα <span class="bibl">Phoeb. <span class="title">Fig.</span>1.5</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">3</span> Gramm., <b class="b2">inversion of letters</b> (e.g. <b class="b3">ἀκήν, ἦκα</b>), <span class="bibl"><span class="title">EM</span> 424.8</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">III</span> [[inversion]], <b class="b3">κατὰ τὴν ἀ. τῆς ἀναλογίας</b> in <b class="b2">inverse ratio</b>, <span class="bibl">Arist.<span class="title">Ph.</span>266b18</span>:—in Logic, <b class="b2">conversion of terms</b> of a proposition, <span class="bibl">Id.<span class="title">APr.</span>25a40</span>; <b class="b3">ἀ. δέχεσθαι</b> to be [[convertible]], ib.<span class="bibl">50b32</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">b</span> Math., τῶν θεωρημάτων ἡ ἀ. <span class="bibl">Procl.<span class="title">in Euc.</span>p.251</span> F., cf. <span class="bibl">Apollon.Perg.<span class="title">Con.</span>2.49</span>; <b class="b3">ἀ. προηγουμένη</b> complete [[conversion]], <span class="bibl">Procl.<span class="title">in Euc.</span>p.253F.</span>; ἀ. ἀξιωμάτων <span class="title">Stoic.</span>2.64; generally, κατ' -φήν [[conversely]], Metrod.<span class="title">Herc.</span> 831.14. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">2</span> [[retortion]] of an argument, <span class="bibl">Arist.<span class="title">APr.</span>61a22</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">3</span> [[change]] of a proposition <b class="b2">into its opposite</b>, ib.<span class="bibl">38a3</span>,<span class="bibl">39a28</span>.</span>
|Definition=ἡ, <span class="sense"><p>&nbsp;&nbsp;&nbsp;<span class="bld">A</span> <b class="b2">a turning about</b>: </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">I</span> in choruses and dances, [[strophic correspondence]], <span class="bibl">D.H.<span class="title">Comp.</span>25</span>; in later writers, = [[ἀντίστροφος]], [[ἡ]] (q.v.), Sch.<span class="bibl">Ar.<span class="title">Nu.</span>595</span>,al. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">II</span> Rhet., [[repetition of closing words in successive members]], Phld.<span class="title">Rh.</span>1.195 S., <span class="bibl">Hermog.<span class="title">Id.</span>1.12</span>, cf, <span class="bibl">2.1</span>, <span class="bibl">Eust.945.60</span>; ἀ. τὸ ἐναντίον τῆς ἐπαναφορᾶς <span class="bibl">Alex.<span class="title">Fig.</span>2.4</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">2</span> [[inversion]], of construction, e.g. <b class="b3">ἠχῶν ἔπεσα</b> for πεσὼν ἤχησα <span class="bibl">Phoeb. <span class="title">Fig.</span>1.5</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">3</span> Gramm., <b class="b2">inversion of letters</b> (e.g. <b class="b3">ἀκήν, ἦκα</b>), <span class="bibl"><span class="title">EM</span> 424.8</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">III</span> [[inversion]], <b class="b3">κατὰ τὴν ἀ. τῆς ἀναλογίας</b> in [[inverse ratio]], <span class="bibl">Arist.<span class="title">Ph.</span>266b18</span>:—in Logic, <b class="b2">conversion of terms</b> of a proposition, <span class="bibl">Id.<span class="title">APr.</span>25a40</span>; <b class="b3">ἀ. δέχεσθαι</b> to be [[convertible]], ib.<span class="bibl">50b32</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">b</span> Math., τῶν θεωρημάτων ἡ ἀ. <span class="bibl">Procl.<span class="title">in Euc.</span>p.251</span> F., cf. <span class="bibl">Apollon.Perg.<span class="title">Con.</span>2.49</span>; <b class="b3">ἀ. προηγουμένη</b> complete [[conversion]], <span class="bibl">Procl.<span class="title">in Euc.</span>p.253F.</span>; ἀ. ἀξιωμάτων <span class="title">Stoic.</span>2.64; generally, κατ' -φήν [[conversely]], Metrod.<span class="title">Herc.</span> 831.14. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">2</span> [[retortion]] of an argument, <span class="bibl">Arist.<span class="title">APr.</span>61a22</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">3</span> [[change]] of a proposition <b class="b2">into its opposite</b>, ib.<span class="bibl">38a3</span>,<span class="bibl">39a28</span>.</span>
}}
}}
{{ls
{{ls