| |Definition=ή, όν, <span class="sense"><span class="bld">A</span> [[globular]], [[spherical]], Placit.1.14.2, al., <span class="bibl">Cleom.1.1</span>, al., <span class="bibl">Arist.<span class="title">PA</span>680b14</span> ([[varia lectio|v.l.]]), <span class="bibl">Ptol.<span class="title">Geog.</span>1.20.2</span>. Adv. <b class="b3">-κῶς</b> [[like a globe]], [[spherically]], <span class="bibl">Arist.<span class="title">Mu.</span>393a1</span>, Plu.2.404f. </span><span class="sense"><span class="bld">2</span> <b class="b3">σ. ἀριθμός</b>, = [[ἀποκαταστατικὸς]] ([[quod vide|q.v.]]) [[ἀριθμός]], <span class="bibl">Nicom.<span class="title">Ar.</span>2.17</span>, <span class="title">Theol.Ar.</span>48, cf. [[σφαιροειδής]] 1.2. </span><span class="sense"><span class="bld">II</span> [[of a sphere]], ἐπιφάνεια <span class="bibl">Euc.<span class="title">Opt.</span>23</span> (recens.Theonis); <b class="b3">προϋφέστηκεν ἡ γεωμετρία τῆς σφαιρικῆς</b> (''[[sc.]]'' [[ἐπιστήμης]]) <span class="bibl">Procl. <span class="title">in Euc.</span>p.37</span> F.: Dor. fem. [[σφαιρικά]], [[ἁ]], <span class="bibl">Archyt.1</span>. </span><span class="sense"><span class="bld">2</span> [[concerning the celestial spheres]], σφαιρικὰ . . [τέχνα] Ἀράτου <span class="title">IG</span>12(5).891.4 (Tenos); <b class="b3">ὁ σ. λόγος</b> the doctrine [[of the spheres]], <span class="bibl">D.S.4.27</span>; so <b class="b3">τὰ σ</b>. <span class="title">AP</span>11.318 (Phld.), Porph. ap. <span class="bibl">Eus.<span class="title">PE</span>3.7</span>, <span class="bibl">Jul.<span class="title">Or.</span>4.148b</span>; <b class="b3">ἡ τῶν Θεοδοσίου σφαιρικῶν ἀστρονομία</b>, a work cited by <span class="bibl">Olymp. <span class="title">in Phlb.</span> p.280</span> S.; called <b class="b3">τὰ Θεοδοσίου σ</b>. by Sch.Autol.p.4 H., and still extant with the latter title (ed. J. L. Heiberg, <b class="b2">Abh. d. Gesellsch. d. Wiss.zu Göttingen</b>, Phil.-Hist.Kl., N.F.<span class="bibl"> xix 3</span>, Berlin <span class="bibl">1927</span>). </span><span class="sense"><span class="bld">III</span> <b class="b3">ἡ -κή</b> (''[[sc.]]'' [[τέχνη]]), = [[ἡ σφαιριστική]], <span class="bibl">Ath.1.14e</span>, <span class="bibl">15c</span>. </span><span class="sense"><span class="bld">IV</span> <b class="b3">-κόν, τό</b>, name of an [[eyesalve]], Gal.12.784.</span> | | |Definition=ή, όν,<br><span class="bld">A</span> [[globular]], [[spherical]], Placit.1.14.2, al., Cleom.1.1, al., Arist.''PA''680b14 ([[varia lectio|v.l.]]), Ptol.''Geog.''1.20.2. Adv. [[σφαιρικῶς]] = [[like a globe]], [[spherically]], Arist.''Mu.''393a1, Plu.2.404f.<br><span class="bld">2</span> <b class="b3">σφαιρικὸς ἀριθμός</b> = [[ἀποκαταστατικός|ἀποκαταστατικὸς]] ([[quod vide|q.v.]]) [[ἀριθμός]], Nicom.''Ar.''2.17, ''Theol.Ar.''48, cf. [[σφαιροειδής]] 1.2.<br><span class="bld">II</span> [[of a sphere]], ἐπιφάνεια Euc.''Opt.''23 (recens.Theonis); <b class="b3">προϋφέστηκεν ἡ γεωμετρία τῆς σφαιρικῆς</b> (''[[sc.]]'' [[ἐπιστήμη]]ς) Procl. ''in Euc.''p.37 F.: Dor. fem. [[σφαιρικά]], ἁ, Archyt.1.<br><span class="bld">2</span> [[concerning the celestial spheres]], σφαιρικὰ . . [τέχνα] Ἀράτου ''IG''12(5).891.4 (Tenos); <b class="b3">ὁ σφαιρικὸς λόγος</b> the [[doctrine]] [[of the spheres]], D.S.4.27; so <b class="b3">τὰ σφαιρικά</b> ''AP''11.318 (Phld.), Porph. ap. Eus.''PE''3.7, Jul.''Or.''4.148b; <b class="b3">ἡ τῶν Θεοδοσίου σφαιρικῶν ἀστρονομία</b>, a work cited by Olymp. ''in Phlb.'' p.280 S.; called <b class="b3">τὰ Θεοδοσίου σφαιρικά</b> by Sch.Autol.p.4 H., and still extant with the latter title (ed. J. L. Heiberg, Abh. d. Gesellsch. d. Wiss.zu Göttingen, Phil.-Hist.Kl., N.F. xix 3, Berlin 1927).<br><span class="bld">III</span> ἡ [[σφαιρική]] (''[[sc.]]'' [[τέχνη]]), = ἡ [[σφαιριστική]], Ath.1.14e, 15c.<br><span class="bld">IV</span> [[σφαιρικόν]], τό, name of an [[eyesalve]], Gal.12.784. |