3,274,313
edits
m (Text replacement - " <span class="bld">" to "<span class="bld">") |
m (Text replacement - " v.l. " to " v.l. ") |
||
Line 8: | Line 8: | ||
|Transliteration C=eylogos | |Transliteration C=eylogos | ||
|Beta Code=eu)/logos | |Beta Code=eu)/logos | ||
|Definition=ον, <span class="sense"><span class="bld">A</span> [[reasonable]], [[sensible]], νουθετήματα <span class="bibl">A.<span class="title">Pers.</span>830</span>; οὐκ εὐλόγῳ ἔοικεν <span class="bibl">Pl.<span class="title">R.</span>605e</span>; εὔ. ὀργή Phld.<span class="title">Ir.</span>p.45 W.; <b class="b3">εὔλογόν [ἐστι</b>] c. inf., [[it is reasonable that]]... <span class="bibl">Pl.<span class="title">Cra.</span>396b</span>, <span class="bibl">Arist.<span class="title">Pol.</span>1286b15</span>, etc.; -<b class="b3">ώτερόν [ἐστι</b>] <span class="bibl">Id.<span class="title">EN</span>1102b2</span>: Sup., <span class="bibl">Id.<span class="title">Cael.</span>286b34</span>. </span><span class="sense"><span class="bld">2</span> [[reasonable]], [[fair]], πρόφασις <span class="bibl">Th.3.82</span>, <span class="bibl">D.18.152</span>, etc.; <b class="b3">τὸ εὔ</b>. [[a fair reason]], <span class="bibl">Th. 4.87</span>. </span><span class="sense"><span class="bld">3</span> [[probable]], c. dat. et inf., <span class="bibl">Hp.<span class="title">de Arte</span>7</span> (Comp.), cf. <span class="bibl">Sphaer.Stoic.1.141</span>, <span class="bibl">Cic.<span class="title">Att.</span>14.22.2</span>; <b class="b3">διὰ σημείων εὐ</b>. <span class="bibl">Phld.<span class="title">Lib.</span>p.30</span> O.; <b class="b3">ἐκ τῶν εὐ</b>. in [[all probability]], <span class="bibl">Plb.10.44.6</span>, cf. <span class="bibl">Plu.<span class="title">Them.</span>13</span>; <b class="b3">ἐκτὸς τῶν εὐ. πίπτειν</b> to be beyond [[all probability]], <span class="bibl">Arist.<span class="title">Metaph.</span>1060a18</span>: Comp., <span class="bibl">Pl.<span class="title">Ep.</span>352a</span>: Sup., <span class="bibl">Cic.<span class="title">Att.</span>13.6.4</span>. Adv. -γως <span class="bibl">Phld.<span class="title">Lib.</span>p.33</span> O. </span><span class="sense"><span class="bld">4</span> [[suitable]], [[conformable]], c. dat., <span class="bibl">Plot.6.5.10</span>. </span><span class="sense"><span class="bld">5</span> [[creditable]], <b class="b3">κατορθώσασι εὔ. [ἐστί</b>] <span class="bibl">Ar.<span class="title">Ra.</span>736</span>. </span><span class="sense"><span class="bld">6</span> [[eloquent]], v.l. for [[ἱκανός]], <span class="bibl">LXX <span class="title">Ex.</span> 4.10</span>, whence <span class="bibl">Ezek.<span class="title">Exag.</span>113</span>, <span class="bibl">Ph.2.93</span>, <span class="bibl">1.166</span> (interpr. as [[reasonable]]). </span><span class="sense"><span class="bld">II</span> Adv. -γως [[with good reason]], [[reasonably]], <span class="bibl">A.<span class="title">Th.</span>508</span>, <span class="bibl"><span class="title">Supp.</span>47</span> (lyr.), <span class="bibl"><span class="title">Fr.</span>6</span>, <span class="bibl">Ar.<span class="title">V.</span>771</span>, <span class="bibl">Lys.12.7</span>; εὐ. ἄπρακτοι ἀπίασιν <span class="bibl">Th. 4.61</span>; <b class="b3">εὐ. φέρειν</b> (Abresch [[εὐλόφως]], q.v.) <span class="bibl">E.<span class="title">Fr.</span>175</span>; εὐ. ἔχειν <span class="bibl">Pl. <span class="title">Phd.</span>62d</span>; εὐ. φθονεῖν τινι <span class="bibl">Alex.219.1</span>; τοῖς εὐ. καὶ τοῖς κακῶς ἔχουσι <span class="bibl">Men.48</span>; freq. like [[εἰκότως]], at the close of a sentence, implying assent, <span class="bibl">Arist.<span class="title">EN</span>1153b15</span>, <span class="bibl">1162b6</span>: Comp. -ωτέρως <span class="bibl">Isoc.6.28</span>; -ώτερον <span class="bibl">Plb.7.7.7</span>. </span><span class="sense"><span class="bld">2</span> <b class="b3">εὐ. τινὰ ἐπιδέξασθαι</b> (v.l. [[ἐνδόξως]]) [[honourably]], <span class="bibl">LXX <span class="title">1 Ma.</span>12.43</span>.</span> | |Definition=ον, <span class="sense"><span class="bld">A</span> [[reasonable]], [[sensible]], νουθετήματα <span class="bibl">A.<span class="title">Pers.</span>830</span>; οὐκ εὐλόγῳ ἔοικεν <span class="bibl">Pl.<span class="title">R.</span>605e</span>; εὔ. ὀργή Phld.<span class="title">Ir.</span>p.45 W.; <b class="b3">εὔλογόν [ἐστι</b>] c. inf., [[it is reasonable that]]... <span class="bibl">Pl.<span class="title">Cra.</span>396b</span>, <span class="bibl">Arist.<span class="title">Pol.</span>1286b15</span>, etc.; -<b class="b3">ώτερόν [ἐστι</b>] <span class="bibl">Id.<span class="title">EN</span>1102b2</span>: Sup., <span class="bibl">Id.<span class="title">Cael.</span>286b34</span>. </span><span class="sense"><span class="bld">2</span> [[reasonable]], [[fair]], πρόφασις <span class="bibl">Th.3.82</span>, <span class="bibl">D.18.152</span>, etc.; <b class="b3">τὸ εὔ</b>. [[a fair reason]], <span class="bibl">Th. 4.87</span>. </span><span class="sense"><span class="bld">3</span> [[probable]], c. dat. et inf., <span class="bibl">Hp.<span class="title">de Arte</span>7</span> (Comp.), cf. <span class="bibl">Sphaer.Stoic.1.141</span>, <span class="bibl">Cic.<span class="title">Att.</span>14.22.2</span>; <b class="b3">διὰ σημείων εὐ</b>. <span class="bibl">Phld.<span class="title">Lib.</span>p.30</span> O.; <b class="b3">ἐκ τῶν εὐ</b>. in [[all probability]], <span class="bibl">Plb.10.44.6</span>, cf. <span class="bibl">Plu.<span class="title">Them.</span>13</span>; <b class="b3">ἐκτὸς τῶν εὐ. πίπτειν</b> to be beyond [[all probability]], <span class="bibl">Arist.<span class="title">Metaph.</span>1060a18</span>: Comp., <span class="bibl">Pl.<span class="title">Ep.</span>352a</span>: Sup., <span class="bibl">Cic.<span class="title">Att.</span>13.6.4</span>. Adv. -γως <span class="bibl">Phld.<span class="title">Lib.</span>p.33</span> O. </span><span class="sense"><span class="bld">4</span> [[suitable]], [[conformable]], c. dat., <span class="bibl">Plot.6.5.10</span>. </span><span class="sense"><span class="bld">5</span> [[creditable]], <b class="b3">κατορθώσασι εὔ. [ἐστί</b>] <span class="bibl">Ar.<span class="title">Ra.</span>736</span>. </span><span class="sense"><span class="bld">6</span> [[eloquent]], [[varia lectio|v.l.]] for [[ἱκανός]], <span class="bibl">LXX <span class="title">Ex.</span> 4.10</span>, whence <span class="bibl">Ezek.<span class="title">Exag.</span>113</span>, <span class="bibl">Ph.2.93</span>, <span class="bibl">1.166</span> (interpr. as [[reasonable]]). </span><span class="sense"><span class="bld">II</span> Adv. -γως [[with good reason]], [[reasonably]], <span class="bibl">A.<span class="title">Th.</span>508</span>, <span class="bibl"><span class="title">Supp.</span>47</span> (lyr.), <span class="bibl"><span class="title">Fr.</span>6</span>, <span class="bibl">Ar.<span class="title">V.</span>771</span>, <span class="bibl">Lys.12.7</span>; εὐ. ἄπρακτοι ἀπίασιν <span class="bibl">Th. 4.61</span>; <b class="b3">εὐ. φέρειν</b> (Abresch [[εὐλόφως]], q.v.) <span class="bibl">E.<span class="title">Fr.</span>175</span>; εὐ. ἔχειν <span class="bibl">Pl. <span class="title">Phd.</span>62d</span>; εὐ. φθονεῖν τινι <span class="bibl">Alex.219.1</span>; τοῖς εὐ. καὶ τοῖς κακῶς ἔχουσι <span class="bibl">Men.48</span>; freq. like [[εἰκότως]], at the close of a sentence, implying assent, <span class="bibl">Arist.<span class="title">EN</span>1153b15</span>, <span class="bibl">1162b6</span>: Comp. -ωτέρως <span class="bibl">Isoc.6.28</span>; -ώτερον <span class="bibl">Plb.7.7.7</span>. </span><span class="sense"><span class="bld">2</span> <b class="b3">εὐ. τινὰ ἐπιδέξασθαι</b> (v.l. [[ἐνδόξως]]) [[honourably]], <span class="bibl">LXX <span class="title">1 Ma.</span>12.43</span>.</span> | ||
}} | }} | ||
{{pape | {{pape |