3,271,364
edits
m (Text replacement - "<span class="sense"><p>" to "<span class="sense">") |
mNo edit summary |
||
Line 8: | Line 8: | ||
|Transliteration C=parallilogrammos | |Transliteration C=parallilogrammos | ||
|Beta Code=parallhlo/grammos | |Beta Code=parallhlo/grammos | ||
|Definition=ον, <span class="sense"> <span class="bld">A</span> [[bounded by parallel lines]], σχῆμα <span class="bibl">Str.4.1.3</span> : neut. as Subst., | |Definition=ον, <span class="sense"> <span class="bld">A</span> [[bounded by parallel lines]], σχῆμα <span class="bibl">Str.4.1.3</span> : neut. as Subst., τὸ [[παραλληλόγραμμον]] = [[parallelogram]], <span class="bibl">Euc.2</span> <span class="title">Def.</span>, Plu.2.1080c, etc.; κατὰ-γραμμον Ascl.<span class="title">Tact.</span>11.7. Adv. -γράμμως <span class="bibl">Iamb. <span class="title">in Nic.</span>p.27</span> P.</span> | ||
}} | }} | ||
[[File:Parallelogram.svg|thumb|Parallelogram|alt=Parallelogram.svg]] | |||
{{ls | {{ls | ||
|lstext='''παραλληλόγραμμος''': -ον, ὁ περιοριζόμενος ὑπὸ παραλλήλων γραμμῶν, Στράβ. 178· τὸ π., γεωμετρικὸν [[σχῆμα]], Εὐκλείδ. 2 Ὁρισμ., Πλούτ. 2. 1080Β, κτλ. | |lstext='''παραλληλόγραμμος''': -ον, ὁ περιοριζόμενος ὑπὸ παραλλήλων γραμμῶν, Στράβ. 178· τὸ π., γεωμετρικὸν [[σχῆμα]], Εὐκλείδ. 2 Ὁρισμ., Πλούτ. 2. 1080Β, κτλ. | ||
Line 19: | Line 20: | ||
|mltxt=-η, -ο / [[παραλληλόγραμμος]], -ον ΝΑ<br /><b>1.</b> (για επιφάνειες) αυτός που έχει τις [[απέναντι]] πλευρές του παράλληλες<br /><b>2.</b> <b>το ουδ. ως ουσ.</b> <i>το παραλληλόγραμμο</i><br /><b>μαθημ.</b> [[τετράπλευρο]] με τις [[απέναντι]] πλευρές του παράλληλες<br /><b>νεοελλ.</b><br /><b>1.</b> <b>φρ.</b> α) «[[νόμος]] παραλληλογράμμου»<br /><b>μαθημ.</b> [[αρχή]] σύμφωνα με την οπόα το [[άθροισμα]] δύο διανυσμάτων, παριστάνεται γεωμετρικά από την διαγώνιο του παραλληλογράμμου που έχει συνεχόμενες πλευρές του τα [[παραπάνω]] διανύσματα<br />β) «[[ταυτότητα]] παραλληλογράμμου»<br /><b>μαθημ.</b> σε ένα παραλληλόγραμμο το [[άθροισμα]] τών τετραγώνων τών μηκών τών διαγωνίων του ισούται με το διπλάσιο του αθροίσματος τών τετραγώνων τών μηκών τών πλευρών του<br />γ) «παραλληλόγραμμο του Βατ» ή «αρθρωτό παραλληλόγραμμο»<br /><b>(μηχαν.)</b> παραλληλόγραμμο που σχηματίζεται από ράβδους συνδεδεμένες με αρθρώσεις<br />δ) «[[κανόνας]] παραλληλογράμμου»<br /><b>φυσ.</b> [[κανόνας]], με την [[βοήθεια]] του οποίου [[είναι]] [[δυνατός]] ο [[προσδιορισμός]] του διανύσματος που αντιπροσωπεύει τη [[συνισταμένη]] δύο δυνάμεων και σύμφωνα με τον οποίο η [[συνισταμένη]] [[δύναμη]] παριστάνεται από την διαγώνιο του παραλληλογράμμου που έχει ως διαδοχικές πλευρές τα δύο διανύσμτα που πεγράφουν τις δύο δυνάμεις<br />ε) «ορθογώνιο παραλληλόγραμμο»<br /><b>μαθημ.</b> παραλληλόγραμμο το οποίο έχει τις γωνίες του ορθές<br /><b>2.</b> <b>το ουδ. ως ουσ.</b> α) όργανο κατάλληλο για τη [[χάραξη]] παράλληλων ευθειών<br />β) όργανο σχεδιασμού το οποίο αποτελείται από δύο παράλληλους κανόνες, χάρακες<br />γ) ο [[παραλληλιστής]]. <br /><b>επίρρ.</b><i>..</i><br /><i>παραλληλογράμμως</i> Α<br />σε [[σχήμα]] παραλληλογράμμου.<br />[<b><span style="color: brown;">ΕΤΥΜΟΛ.</span></b> <span style="color: red;"><</span> [[παράλληλος]] <span style="color: red;">+</span> -<i>γραμμος</i> (<span style="color: red;"><</span> <i>γραμή</i>), <b>πρβλ.</b> [[ευθύ]]-<i>γραμμος</i>]. | |mltxt=-η, -ο / [[παραλληλόγραμμος]], -ον ΝΑ<br /><b>1.</b> (για επιφάνειες) αυτός που έχει τις [[απέναντι]] πλευρές του παράλληλες<br /><b>2.</b> <b>το ουδ. ως ουσ.</b> <i>το παραλληλόγραμμο</i><br /><b>μαθημ.</b> [[τετράπλευρο]] με τις [[απέναντι]] πλευρές του παράλληλες<br /><b>νεοελλ.</b><br /><b>1.</b> <b>φρ.</b> α) «[[νόμος]] παραλληλογράμμου»<br /><b>μαθημ.</b> [[αρχή]] σύμφωνα με την οπόα το [[άθροισμα]] δύο διανυσμάτων, παριστάνεται γεωμετρικά από την διαγώνιο του παραλληλογράμμου που έχει συνεχόμενες πλευρές του τα [[παραπάνω]] διανύσματα<br />β) «[[ταυτότητα]] παραλληλογράμμου»<br /><b>μαθημ.</b> σε ένα παραλληλόγραμμο το [[άθροισμα]] τών τετραγώνων τών μηκών τών διαγωνίων του ισούται με το διπλάσιο του αθροίσματος τών τετραγώνων τών μηκών τών πλευρών του<br />γ) «παραλληλόγραμμο του Βατ» ή «αρθρωτό παραλληλόγραμμο»<br /><b>(μηχαν.)</b> παραλληλόγραμμο που σχηματίζεται από ράβδους συνδεδεμένες με αρθρώσεις<br />δ) «[[κανόνας]] παραλληλογράμμου»<br /><b>φυσ.</b> [[κανόνας]], με την [[βοήθεια]] του οποίου [[είναι]] [[δυνατός]] ο [[προσδιορισμός]] του διανύσματος που αντιπροσωπεύει τη [[συνισταμένη]] δύο δυνάμεων και σύμφωνα με τον οποίο η [[συνισταμένη]] [[δύναμη]] παριστάνεται από την διαγώνιο του παραλληλογράμμου που έχει ως διαδοχικές πλευρές τα δύο διανύσμτα που πεγράφουν τις δύο δυνάμεις<br />ε) «ορθογώνιο παραλληλόγραμμο»<br /><b>μαθημ.</b> παραλληλόγραμμο το οποίο έχει τις γωνίες του ορθές<br /><b>2.</b> <b>το ουδ. ως ουσ.</b> α) όργανο κατάλληλο για τη [[χάραξη]] παράλληλων ευθειών<br />β) όργανο σχεδιασμού το οποίο αποτελείται από δύο παράλληλους κανόνες, χάρακες<br />γ) ο [[παραλληλιστής]]. <br /><b>επίρρ.</b><i>..</i><br /><i>παραλληλογράμμως</i> Α<br />σε [[σχήμα]] παραλληλογράμμου.<br />[<b><span style="color: brown;">ΕΤΥΜΟΛ.</span></b> <span style="color: red;"><</span> [[παράλληλος]] <span style="color: red;">+</span> -<i>γραμμος</i> (<span style="color: red;"><</span> <i>γραμή</i>), <b>πρβλ.</b> [[ευθύ]]-<i>γραμμος</i>]. | ||
}} | }} | ||
==Wikipedia EN== | |||
In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations. | |||
==Translations== | |||
af: parallelogram; ar: متوازي أضلاع; ast: paralelogramu; az: paraleloqram; ba: параллелограмм; be_x_old: паралелаграм; be: паралелаграм; bg: успоредник; bn: সামান্তরিক; bs: paralelogram; ca: paral·lelogram; ckb: لاھاوبەرە; cs: rovnoběžník; cy: paralelogram; da: parallelogram; de: Parallelogramm; dsb: paralelogram; el: παραλληλόγραμμο; en: parallelogram; eo: paralelogramo; es: paralelogramo; et: rööpkülik; eu: paralelogramo; fa: متوازیالاضلاع; fi: suunnikas; fr: parallélogramme; ga: comhthreomharán; gl: paralelogramo; he: מקבילית; hi: समान्तर चतुर्भुज; hr: paralelogram; hsb: runoběžnik; hu: paralelogramma; hy: զուգահեռագիծ; id: jajar genjang; is: samsíðungur; it: parallelogramma; ja: 平行四辺形; jv: jajaran génjang; ka: პარალელოგრამი; kk: параллелограмм; km: ប្រលេឡូក្រាម; ko: 평행사변형; ku: çargoşeya yeksan; la: parallelogrammum; lmo: paralelogràm; lt: lygiagretainis; lv: paralelograms; mhr: параллелограмм; mk: паралелограм; ml: സാമാന്തരികം; mr: समांतरभुज चौकोन; ne: समानान्तर चतुर्भुज; nl: parallellogram; nn: parallellogram; no: parallellogram; pa: ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ; pl: równoległobok; pms: paralelograma; pt: paralelogramo; ro: paralelogram; ru: параллелограмм; scn: paralleluggramma; se: parallellográmma; sh: paralelogram; simple: parallelogram; sk: rovnobežník; sl: paralelogram; sn: gonyoina sambamba; so: barbaroole; sq: paralelogrami; sr: паралелограм; su: pasagi doyong; sv: parallellogram; ta: இணைகரம்; te: సమాంతర చతుర్భుజం; th: รูปสี่เหลี่ยมด้านขนาน; tl: paralelogram; tr: paralelkenar; uk: паралелограм; uz: parallelogramm; vi: hình bình hành; vls: parallellogram; war: paralelogramo; wuu: 平行四边形; zh_yue: 平行四邊形; zh: 平行四边形 |