3,277,220
edits
m (Text replacement - "(*UTF)(*UCP)(op\.) ([\p{Greek}\s]+) ([a-zA-Z:\(])" to "$1 $2 $3") |
m (Text replacement - "(?s)({{LSJ.*}}\n)({{.*}}\n)({{DGE.*}}\n)" to "$1$3$2") |
||
Line 9: | Line 9: | ||
|Beta Code=ei)dhtiko/s | |Beta Code=ei)dhtiko/s | ||
|Definition=ή, όν, <span class="sense"><span class="bld">A</span> [[constituting an]] εἶδος <span class="bibl">111.2</span>, [[ἀριθμός]], opp. [[μαθηματικός]], <span class="bibl">Arist.<span class="title">Metaph.</span>1086a5</span>, <span class="bibl">1088b34</span> (but later <b class="b3">εἰ. ἀριθμός</b> [[capable of being represented by a geometrical pattern]], [[figurate]], <span class="bibl">Iamb. <span class="title">Comm.Math.</span>19</span>); [[formal]], αἰτία Alex. Aphr.<span class="title">in Metaph.</span>124.9, <span class="bibl">Procl.<span class="title">Inst.</span>178</span>; αἴτια <span class="bibl">Olymp.<span class="title">in Mete.</span>302.28</span>; opp. [[εἰδητός]] ([[quod vide|q.v.]]), <span class="bibl">Dam.<span class="title">Pr.</span>81</span>. </span><span class="sense"><span class="bld">2</span> [[concerned with]] [[εἴδη]], [[νόησις]] ib.<span class="bibl">5</span>; [[ἀποδείξεις]] ibid.; [[specific]], <span class="bibl">Alex.Aphr.<span class="title">in Metaph.</span>113.6</span>. </span><span class="sense"><span class="bld">II</span> Adv. -κῶς <span class="bibl">Dam.<span class="title">Pr.</span>284</span>,<span class="bibl">321</span>, <span class="bibl">Procl.<span class="title">in Prm.</span>pp.625,649</span> S.</span> | |Definition=ή, όν, <span class="sense"><span class="bld">A</span> [[constituting an]] εἶδος <span class="bibl">111.2</span>, [[ἀριθμός]], opp. [[μαθηματικός]], <span class="bibl">Arist.<span class="title">Metaph.</span>1086a5</span>, <span class="bibl">1088b34</span> (but later <b class="b3">εἰ. ἀριθμός</b> [[capable of being represented by a geometrical pattern]], [[figurate]], <span class="bibl">Iamb. <span class="title">Comm.Math.</span>19</span>); [[formal]], αἰτία Alex. Aphr.<span class="title">in Metaph.</span>124.9, <span class="bibl">Procl.<span class="title">Inst.</span>178</span>; αἴτια <span class="bibl">Olymp.<span class="title">in Mete.</span>302.28</span>; opp. [[εἰδητός]] ([[quod vide|q.v.]]), <span class="bibl">Dam.<span class="title">Pr.</span>81</span>. </span><span class="sense"><span class="bld">2</span> [[concerned with]] [[εἴδη]], [[νόησις]] ib.<span class="bibl">5</span>; [[ἀποδείξεις]] ibid.; [[specific]], <span class="bibl">Alex.Aphr.<span class="title">in Metaph.</span>113.6</span>. </span><span class="sense"><span class="bld">II</span> Adv. -κῶς <span class="bibl">Dam.<span class="title">Pr.</span>284</span>,<span class="bibl">321</span>, <span class="bibl">Procl.<span class="title">in Prm.</span>pp.625,649</span> S.</span> | ||
}} | |||
{{DGE | |||
|dgtxt=-ή, -ον<br /><b class="num">I</b> <b class="num">1</b>[[relativo a la idea]] platónica, [[ideal]] τὸν αὐτὸν εἰδητικὸν καὶ μαθηματικὸν ἐποίησαν ἀριθμόν identificaron el número ideal con el matemático</i> Arist.<i>Metaph</i>.1086<sup>a</sup>8, cf. 1088<sup>b</sup>34, 1090<sup>b</sup>35, τὸ δὲ καλὸν ἐραστὸν εἰδητικόν la belleza es el objeto ideal del amor</i> Dam.<i>in Phlb</i>.16, τὸ ἕν Dam.<i>Pr</i>.25.<br /><b class="num">2</b> [[formal]] [[αἰτία]] Alex.Aphr.<i>in Metaph</i>.124.9, Procl.<i>Inst</i>.178, εἰδητικὴ τῶν ἀριθμῶν [[διαφορά]] Alex.Aphr.<i>in Metaph</i>.113.6, τὸ ὄν Dam.<i>Pr</i>.58, [[ἀριθμός]] Dam.<i>Pr</i>.89, λόγος Dam.<i>in Phlb</i>.62.<br /><b class="num">3</b> [[específico]] παραλλαγὰς ἔχουσα εἰδητικάς (ἡ ψυχή) Porph.<i>Sent</i>.37, νόησις Dam.<i>Pr</i>.5, ἀποδείξεις Dam.<i>Pr</i>.5, φύσις Dam.<i>Pr</i>.87, οὐσία Procl.<i>in Prm</i>.729, διαφοραί Iambl.<i>Comm.Math</i>.2.<br /><b class="num">4</b> [[capaz de conocer]] εἰ. op. [[εἰδητός]] dicho del νοῦς como forma, Dam.<i>Pr</i>.81, εἰδικοὶ ἢ εἰδητικοί (δαίμονες) identificados con facultades anímicas, Olymp.<i>in Alc</i>.18.<br /><b class="num">5</b> [[que puede ser representado por una figura geométrica]] [[ἀριθμός]] Iambl.<i>Comm.Math</i>.19.<br /><b class="num">II</b> adv. -ῶς<br /><b class="num">1</b> [[de forma ideal]], [[idealmente]] op. [[οὐσιωδῶς]] Dam.<i>in Prm</i>.284, cf. 321.<br /><b class="num">2</b> [[de manera específica]] ἑναδικῶς καὶ εἰ. Procl.<i>in Prm</i>.805, cf. 836. | |||
}} | }} | ||
{{pape | {{pape | ||
Line 15: | Line 18: | ||
{{ls | {{ls | ||
|lstext='''εἰδητικός''': -ή, -όν, [[ἐπιστημονικός]], Σχόλ. εἰς Ἀριστ. Μετὰ τὰ Φυσικ. 305. 336, Brandis. - Ἐπίρρ. εἰδητικῶς Πρόκλ. εἰς Παρμεν. Πλάτ. σ. 625. 649, ἔκδ. Stallb. | |lstext='''εἰδητικός''': -ή, -όν, [[ἐπιστημονικός]], Σχόλ. εἰς Ἀριστ. Μετὰ τὰ Φυσικ. 305. 336, Brandis. - Ἐπίρρ. εἰδητικῶς Πρόκλ. εἰς Παρμεν. Πλάτ. σ. 625. 649, ἔκδ. Stallb. | ||
}} | }} | ||
{{grml | {{grml | ||
|mltxt=-ή, -ό (Α [[εἰδητικός]], -ή, -όν)<br /><b>αρχ.</b><br /><b>1.</b> αυτός που αποτελεί το [[είδος]]<br /><b>2.</b> [[ειδικός]]<br /><b>νεοελλ.</b><br />αυτός που αναφέρεται στην [[αισθητοποίηση]] τών αναμνήσεων ώστε να προβάλλονται ως πραγματικές εικόνες. | |mltxt=-ή, -ό (Α [[εἰδητικός]], -ή, -όν)<br /><b>αρχ.</b><br /><b>1.</b> αυτός που αποτελεί το [[είδος]]<br /><b>2.</b> [[ειδικός]]<br /><b>νεοελλ.</b><br />αυτός που αναφέρεται στην [[αισθητοποίηση]] τών αναμνήσεων ώστε να προβάλλονται ως πραγματικές εικόνες. | ||
}} | }} |