Anonymous

σωρίτης: Difference between revisions

From LSJ
m
Text replacement - "(?s)(==Wikipedia EL==)(\n)(.*)(\n[{=])" to "{{wkpel |wkeltx=$3 }}$4"
m (Text replacement - "(?s)(==Wikipedia EN==)(\n)(.*)(\n[{=])" to "{{wkpen |wketx=$3 }}$4")
m (Text replacement - "(?s)(==Wikipedia EL==)(\n)(.*)(\n[{=])" to "{{wkpel |wkeltx=$3 }}$4")
Line 22: Line 22:
|wketx=The [[sorites]] [[paradox]] (/soʊˈraɪtiːz/; sometimes known as the paradox of the heap) is a paradox that arises from vague predicates. A typical formulation involves a heap of sand, from which grains are individually removed. Under the assumption that removing a single grain does not turn a heap into a non-heap, the paradox is to consider what happens when the process is repeated enough times: is a single remaining grain still a heap? If not, when did it change from a heap to a non-heap?
|wketx=The [[sorites]] [[paradox]] (/soʊˈraɪtiːz/; sometimes known as the paradox of the heap) is a paradox that arises from vague predicates. A typical formulation involves a heap of sand, from which grains are individually removed. Under the assumption that removing a single grain does not turn a heap into a non-heap, the paradox is to consider what happens when the process is repeated enough times: is a single remaining grain still a heap? If not, when did it change from a heap to a non-heap?
}}
}}
==Wikipedia EL==
{{wkpel
Το σόφισμα του σωρείτη, ή σόφισμα του σωρού ή σόφισμα του μη σωρού, είναι ένα λογικό παράδοξο που ασχολείται με την ασάφεια των κατηγορημάτων σε μία λογική πρόταση δείχνοντας ότι είναι πιθανό να μην υπάρχει ένα σαφές όριο ανάμεσα σε ένα κατηγόρημα και την άρνησή του.
|wkeltx=Το σόφισμα του σωρείτη, ή σόφισμα του σωρού ή σόφισμα του μη σωρού, είναι ένα λογικό παράδοξο που ασχολείται με την ασάφεια των κατηγορημάτων σε μία λογική πρόταση δείχνοντας ότι είναι πιθανό να μην υπάρχει ένα σαφές όριο ανάμεσα σε ένα κατηγόρημα και την άρνησή του.
}}
==Wikipedia DE==
==Wikipedia DE==
Die Paradoxie des Haufens, auch Sorites-Paradoxie (von griechisch sorós: Haufen), ist ein Phänomen, das bei vagen Begriffen auftritt. Die Paradoxie zeigt sich, wenn versucht wird, etwas als Haufen zu bestimmen: Es lässt sich keine konkrete, nicht willkürlich beschlossene Anzahl von Elementen angeben, aus denen ein Haufen mindestens bestehen müsste, denn der Begriff des Haufens beinhaltet, dass etwas, das ein Haufen ist, auch ein Haufen bleibt, wenn ein Teil seiner Elemente entfernt wird. Kehrt man diesen Gedanken um, so wird es schwierig zu sagen, ab wann eine Ansammlung von Elementen als Haufen gelten kann. Der Begriff „Haufen“, verstanden als Anhäufung gleichartiger Teile, lässt sich anscheinend nicht klar definieren. Auch bei anderen ähnlich gelagerten vagen Prädikaten wird von Sorites-Fällen gesprochen, so z. B. beim Paradox vom Kahlköpfigen.
Die Paradoxie des Haufens, auch Sorites-Paradoxie (von griechisch sorós: Haufen), ist ein Phänomen, das bei vagen Begriffen auftritt. Die Paradoxie zeigt sich, wenn versucht wird, etwas als Haufen zu bestimmen: Es lässt sich keine konkrete, nicht willkürlich beschlossene Anzahl von Elementen angeben, aus denen ein Haufen mindestens bestehen müsste, denn der Begriff des Haufens beinhaltet, dass etwas, das ein Haufen ist, auch ein Haufen bleibt, wenn ein Teil seiner Elemente entfernt wird. Kehrt man diesen Gedanken um, so wird es schwierig zu sagen, ab wann eine Ansammlung von Elementen als Haufen gelten kann. Der Begriff „Haufen“, verstanden als Anhäufung gleichartiger Teile, lässt sich anscheinend nicht klar definieren. Auch bei anderen ähnlich gelagerten vagen Prädikaten wird von Sorites-Fällen gesprochen, so z. B. beim Paradox vom Kahlköpfigen.