Anonymous

πλάτος: Difference between revisions

From LSJ
13_5
(13)
 
(13_5)
Line 9: Line 9:
|Beta Code=pla/tos
|Beta Code=pla/tos
|Definition=(A) [<b class="b3">ᾰ], εος, τό,</b> (πλατύς) <span class="sense"><p>&nbsp;&nbsp;&nbsp;<span class="bld">A</span> <b class="b2">breadth, width</b>, σώματος <span class="bibl">Simon.188</span>, etc.: abs., <b class="b3">τὸ π</b>. or <b class="b3">π</b>., <b class="b2">in breadth</b>. <span class="bibl">Hdt.1.193</span>, <span class="bibl">4.195</span>, <span class="bibl">X.<span class="title">Oec.</span>19.3</span>; ἴση μῆκός τε π. τε <span class="bibl">Emp.17.20</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">b</span> Math., <b class="b2">breadth</b>, i.e. <b class="b2">the second dimension</b>, ἐν μήκει καὶ π. καὶ βάθει <span class="bibl">Pl.<span class="title">Sph.</span>235d</span>, cf. <span class="bibl">Arist.<span class="title">Ph.</span>209a5</span>; <b class="b3">κατὰ π</b>., opp. <b class="b3">κατὰ μῆκος, κατὰ βάθος</b>, <span class="bibl">Id.<span class="title">Cael.</span>299b26</span>, <span class="bibl"><span class="title">Mete.</span>341b34</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">2</span> <b class="b2">plane surface</b>, <span class="bibl">Pl.<span class="title">Plt.</span>284e</span>, <span class="bibl"><span class="title">Lg.</span>819e</span>; μεγέθους τὸ ἐπὶ δύο [συνεχὲς] π. <span class="bibl">Arist.<span class="title">Metaph.</span>1020a12</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">3</span> <b class="b2">latitude</b>, whether terrestrial or celestial, <span class="bibl">Str.1.4.2</span>, <span class="bibl">Cleom.1.4</span>, <span class="bibl">2.4</span>, Ptol.<span class="title">Alm.</span>2.12, <span class="bibl">Vett.Val.30.12</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">4</span> metaph., <b class="b2">plane</b>, ἐν τῷ ψυχικῷ π. <span class="bibl">Procl.<span class="title">Inst.</span>201</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">5</span> <b class="b2">plane</b> of flat fish, <span class="bibl">Arist.<span class="title">HA</span>489b33</span>; <b class="b2">flat</b> of the tail, ib.<span class="bibl">549b1</span>; <b class="b2">flat part</b> of the body of the fishing-frog, <span class="bibl">Id.<span class="title">PA</span>695b15</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">6</span> <b class="b2">extension, breadth</b> of a subject, Gal.1.316; οὐκ ὀλίγον τὸ π. Id.11.738. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">7</span> = [[πλάτας]], Judeich <b class="b2">Altertümervon Hierapolis</b> No.322, al. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">II</span> metaph., <b class="b2">range</b> of variation, <b class="b2">latitude</b>, π. ἔχειν <span class="bibl">Plot.6.3.20</span>; ἡ ὑγίεια π. ἔχει Gal.6.12, cf.11.737. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">III</span> with Preps., <b class="b3">ἐν πλάτει</b> in a <b class="b2">loose</b> sense, <b class="b2">broadly</b>, Posidon. ap.Stob.1.8.42, <span class="bibl">Str.2.1.39</span>, <span class="bibl">D.H.<span class="title">Comp.</span>21</span>, <span class="bibl"><span class="title">EM</span>673.24</span>; opp. <b class="b3">κατ' ἀκρίβειαν</b>, <span class="bibl">S.E.<span class="title">M.</span>10.108</span>; ὡς ἐν π. <span class="bibl">Sor.1.24</span> (but <b class="b3">περὶ ὧν ἐν τῷ π. λέγομεν</b> which we will discuss <b class="b2">in detail</b>, <span class="bibl">D.L.7.76</span>); also <b class="b3">ἐπὶ πλάτει Ἑλληνίζειν</b> talk <b class="b2">loose</b> Greek, <span class="bibl">Phld.<span class="title">Po.</span>2.9</span>; <b class="b3">κατὰ πλάτος λέγεσθαι</b> to be said <b class="b2">loosely</b>, <span class="bibl">Chrysipp.Stoic.2.164</span>, cf. <span class="bibl">Sor.1.6</span>, <span class="bibl">21</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">IV</span> = [[πλατύτης]] <span class="bibl">3</span>, <span class="bibl">Demetr. <span class="title">Eloc.</span>177</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">V</span> <b class="b3">π. καρδίας</b>, of Solomon, <b class="b2">width</b> of knowledge, <span class="bibl">LXX <span class="title">3 Ki.</span>2.35a</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">VI</span> <b class="b3">ἀργυρίου πλάτη</b>, = [[δραχμαί]], <span class="title">IG</span>9(1).189.15 (Tithora, ii A.D.).</span><br /><span class="bld">πλάτος</span> (B) [ᾰ], ὁ, <span class="sense"><p>&nbsp;&nbsp;&nbsp;<span class="bld">A</span> = [[πλάτας]], <span class="title">IGRom.</span>4.866 (Laodicea ad Lycum).</span>
|Definition=(A) [<b class="b3">ᾰ], εος, τό,</b> (πλατύς) <span class="sense"><p>&nbsp;&nbsp;&nbsp;<span class="bld">A</span> <b class="b2">breadth, width</b>, σώματος <span class="bibl">Simon.188</span>, etc.: abs., <b class="b3">τὸ π</b>. or <b class="b3">π</b>., <b class="b2">in breadth</b>. <span class="bibl">Hdt.1.193</span>, <span class="bibl">4.195</span>, <span class="bibl">X.<span class="title">Oec.</span>19.3</span>; ἴση μῆκός τε π. τε <span class="bibl">Emp.17.20</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">b</span> Math., <b class="b2">breadth</b>, i.e. <b class="b2">the second dimension</b>, ἐν μήκει καὶ π. καὶ βάθει <span class="bibl">Pl.<span class="title">Sph.</span>235d</span>, cf. <span class="bibl">Arist.<span class="title">Ph.</span>209a5</span>; <b class="b3">κατὰ π</b>., opp. <b class="b3">κατὰ μῆκος, κατὰ βάθος</b>, <span class="bibl">Id.<span class="title">Cael.</span>299b26</span>, <span class="bibl"><span class="title">Mete.</span>341b34</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">2</span> <b class="b2">plane surface</b>, <span class="bibl">Pl.<span class="title">Plt.</span>284e</span>, <span class="bibl"><span class="title">Lg.</span>819e</span>; μεγέθους τὸ ἐπὶ δύο [συνεχὲς] π. <span class="bibl">Arist.<span class="title">Metaph.</span>1020a12</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">3</span> <b class="b2">latitude</b>, whether terrestrial or celestial, <span class="bibl">Str.1.4.2</span>, <span class="bibl">Cleom.1.4</span>, <span class="bibl">2.4</span>, Ptol.<span class="title">Alm.</span>2.12, <span class="bibl">Vett.Val.30.12</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">4</span> metaph., <b class="b2">plane</b>, ἐν τῷ ψυχικῷ π. <span class="bibl">Procl.<span class="title">Inst.</span>201</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">5</span> <b class="b2">plane</b> of flat fish, <span class="bibl">Arist.<span class="title">HA</span>489b33</span>; <b class="b2">flat</b> of the tail, ib.<span class="bibl">549b1</span>; <b class="b2">flat part</b> of the body of the fishing-frog, <span class="bibl">Id.<span class="title">PA</span>695b15</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">6</span> <b class="b2">extension, breadth</b> of a subject, Gal.1.316; οὐκ ὀλίγον τὸ π. Id.11.738. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">7</span> = [[πλάτας]], Judeich <b class="b2">Altertümervon Hierapolis</b> No.322, al. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">II</span> metaph., <b class="b2">range</b> of variation, <b class="b2">latitude</b>, π. ἔχειν <span class="bibl">Plot.6.3.20</span>; ἡ ὑγίεια π. ἔχει Gal.6.12, cf.11.737. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">III</span> with Preps., <b class="b3">ἐν πλάτει</b> in a <b class="b2">loose</b> sense, <b class="b2">broadly</b>, Posidon. ap.Stob.1.8.42, <span class="bibl">Str.2.1.39</span>, <span class="bibl">D.H.<span class="title">Comp.</span>21</span>, <span class="bibl"><span class="title">EM</span>673.24</span>; opp. <b class="b3">κατ' ἀκρίβειαν</b>, <span class="bibl">S.E.<span class="title">M.</span>10.108</span>; ὡς ἐν π. <span class="bibl">Sor.1.24</span> (but <b class="b3">περὶ ὧν ἐν τῷ π. λέγομεν</b> which we will discuss <b class="b2">in detail</b>, <span class="bibl">D.L.7.76</span>); also <b class="b3">ἐπὶ πλάτει Ἑλληνίζειν</b> talk <b class="b2">loose</b> Greek, <span class="bibl">Phld.<span class="title">Po.</span>2.9</span>; <b class="b3">κατὰ πλάτος λέγεσθαι</b> to be said <b class="b2">loosely</b>, <span class="bibl">Chrysipp.Stoic.2.164</span>, cf. <span class="bibl">Sor.1.6</span>, <span class="bibl">21</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">IV</span> = [[πλατύτης]] <span class="bibl">3</span>, <span class="bibl">Demetr. <span class="title">Eloc.</span>177</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">V</span> <b class="b3">π. καρδίας</b>, of Solomon, <b class="b2">width</b> of knowledge, <span class="bibl">LXX <span class="title">3 Ki.</span>2.35a</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">VI</span> <b class="b3">ἀργυρίου πλάτη</b>, = [[δραχμαί]], <span class="title">IG</span>9(1).189.15 (Tithora, ii A.D.).</span><br /><span class="bld">πλάτος</span> (B) [ᾰ], ὁ, <span class="sense"><p>&nbsp;&nbsp;&nbsp;<span class="bld">A</span> = [[πλάτας]], <span class="title">IGRom.</span>4.866 (Laodicea ad Lycum).</span>
}}
{{pape
|ptext=[[https://www.translatum.gr/images/pape/pape-02-0626.png Seite 626]] τό, die <b class="b2">Breite</b>; Ar. Av. 1129; ἐν μήκει καὶ βάθει καὶ πλάτει, Plat. Soph. 235 d; διώρυχα τρίπλεθρον τὸ [[πλάτος]], Critia. 115 d; u. so gew. bei Folgdn; ἐν πλάτει od. κατὰ [[πλάτος]], in aller Breite, d. i. ausführlich, bes. Sp.; ἐν πλάτει τε καὶ κατ' ἀκρίβειαν, S. Emp. adv. phys. 2, 108; Ggstz κατὰ περιγραφήν, 15.
}}
}}