Anonymous

διάμετρος: Difference between revisions

From LSJ
6_1
(4)
 
(6_1)
Line 9: Line 9:
|Beta Code=dia/metros
|Beta Code=dia/metros
|Definition=ον, <span class="sense"><p>&nbsp;&nbsp;&nbsp;<span class="bld">A</span> <b class="b2">diametrical</b>: Astrol., <b class="b2">diametrically opposed</b>, <span class="bibl">Ptol.<span class="title">Tetr.</span>115</span>, <span class="bibl">Man.1.89</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">II</span> Subst. <b class="b3">δ</b>. (sc. <b class="b3">γραμμή</b>), ἡ, <b class="b2">diagonal</b> of a parallelogram, <span class="bibl">Pl.<span class="title">Men.</span>85b</span>,al.; <b class="b3">κατὰ δ. συντίθεσθαι</b>, of triangles, <b class="b2">by the hypotenuses</b>, <span class="bibl">Id.<span class="title">Ti.</span>54d</span>; <b class="b2">diameter</b> of a circle, <span class="bibl">Arist.<span class="title">Cael.</span>271a12</span>, etc.; <b class="b2">axis</b> of a sphere, <span class="bibl">Id.<span class="title">MA</span>699a29</span>; <b class="b2">diameter</b> of other curves, <span class="bibl">Apollon.Perg.<span class="title">Con.</span>1</span><span class="title">Def.</span>1; <b class="b2">axis</b> of a conic, <span class="bibl">Archim.<span class="title">Aequil.</span>2.10</span>; <b class="b3">ἡ κατὰ διάμετρον σύζευξις</b>, of circles, <span class="bibl">Arist.<span class="title">EN</span>1133a6</span>; τὰ κατὰ δ. <span class="bibl">Id.<span class="title">Cael.</span>277a24</span>; κεῖσθαι κατὰ δ. <span class="bibl">Id.<span class="title">Mete.</span>363a34</span>, al.; <b class="b3">κατὰ δ. κινεῖσθαι</b>, of quadrupeds, which move the legs <b class="b2">cross-corner-wise</b>, as horses when <b class="b2">trotting</b> (opp. <b class="b3">κατὰ πλευρὰν κινεῖσθαι</b> ambling, in which the legs on either side move together), <span class="bibl">Id.<span class="title">HA</span>490b4</span>, <span class="bibl"><span class="title">IA</span>712a25</span>, cf. Plu. 2.43a; <b class="b3">ἐκ διαμέτρου ἀντικείμενος</b>, of planets, <b class="b2">in opposition, PMag. Par</b>.1.2221; ἐκ διαμέτρου ἡμῖν οἱ βίοι <span class="bibl">Luc.<span class="title">Cat.</span>14</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">2</span> prob. <b class="b2">mitre-square</b>, <span class="bibl">Ar.<span class="title">Ra.</span>801</span>.</span>
|Definition=ον, <span class="sense"><p>&nbsp;&nbsp;&nbsp;<span class="bld">A</span> <b class="b2">diametrical</b>: Astrol., <b class="b2">diametrically opposed</b>, <span class="bibl">Ptol.<span class="title">Tetr.</span>115</span>, <span class="bibl">Man.1.89</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">II</span> Subst. <b class="b3">δ</b>. (sc. <b class="b3">γραμμή</b>), ἡ, <b class="b2">diagonal</b> of a parallelogram, <span class="bibl">Pl.<span class="title">Men.</span>85b</span>,al.; <b class="b3">κατὰ δ. συντίθεσθαι</b>, of triangles, <b class="b2">by the hypotenuses</b>, <span class="bibl">Id.<span class="title">Ti.</span>54d</span>; <b class="b2">diameter</b> of a circle, <span class="bibl">Arist.<span class="title">Cael.</span>271a12</span>, etc.; <b class="b2">axis</b> of a sphere, <span class="bibl">Id.<span class="title">MA</span>699a29</span>; <b class="b2">diameter</b> of other curves, <span class="bibl">Apollon.Perg.<span class="title">Con.</span>1</span><span class="title">Def.</span>1; <b class="b2">axis</b> of a conic, <span class="bibl">Archim.<span class="title">Aequil.</span>2.10</span>; <b class="b3">ἡ κατὰ διάμετρον σύζευξις</b>, of circles, <span class="bibl">Arist.<span class="title">EN</span>1133a6</span>; τὰ κατὰ δ. <span class="bibl">Id.<span class="title">Cael.</span>277a24</span>; κεῖσθαι κατὰ δ. <span class="bibl">Id.<span class="title">Mete.</span>363a34</span>, al.; <b class="b3">κατὰ δ. κινεῖσθαι</b>, of quadrupeds, which move the legs <b class="b2">cross-corner-wise</b>, as horses when <b class="b2">trotting</b> (opp. <b class="b3">κατὰ πλευρὰν κινεῖσθαι</b> ambling, in which the legs on either side move together), <span class="bibl">Id.<span class="title">HA</span>490b4</span>, <span class="bibl"><span class="title">IA</span>712a25</span>, cf. Plu. 2.43a; <b class="b3">ἐκ διαμέτρου ἀντικείμενος</b>, of planets, <b class="b2">in opposition, PMag. Par</b>.1.2221; ἐκ διαμέτρου ἡμῖν οἱ βίοι <span class="bibl">Luc.<span class="title">Cat.</span>14</span>. </span><span class="sense">&nbsp;&nbsp;&nbsp;<span class="bld">2</span> prob. <b class="b2">mitre-square</b>, <span class="bibl">Ar.<span class="title">Ra.</span>801</span>.</span>
}}
{{ls
|lstext='''διάμετρος''': (ἐνν. [[γραμμή]]), ἡ, ἡ [[διάμετρος]] ἢ [[διαγώνιος]] παραλληλογράμμου, Πλάτ. Μένωνι 85Β κ. ἀλλ.˙ κατὰ δ. ξυντίθεσθαι, διὰ διαμέτρου ἑνοῦμαι, ὁ αὐτ. Τιμ. 54Ε˙ [[οὕτως]], ἡ κατὰ [[διάμετρον]] [[σύζευξις]] Ἀριστ. Ἠθ. Ν. 5. 5, 8˙ τὰ κατὰ δ. ὁ αὐτ. Οὐρ. 1. 8, 11˙ κεῖσθαι κατὰ δ. ὁ αὐτ. Μετεωρ. 2. 6, 5 κ. ἀλλ.˙ κατὰ [[διάμετρον]] κινεῖσθαι, ἐπὶ τετραπόδων, ἅτινα κινοῦσι τοὺς πόδας αὐτῶν [[σταυροειδῶς]], [[οἷον]] οἱ ἵπποι τριποδίζοντες (ἀντίθ. κατὰ πλευρὰν κινεῖσθαι, [[ὅταν]] οἱ κατὰ τὴν αὐτὴν πλευρὰν πόδες κινῶνται [[ὁμοῦ]]), Ἀριστ. π. Ζ. πορ. 1. 5., 14, 4, πρβλ. Πλούτ. 2. 43Α˙ ἐκ διαμέτρου ἀντικεῖσθαι Λουκ. Κατάπλ. 14. 2) [[διάμετρος]] κύκλου, Ἀριστ. Οὐρ. 1. 4, 3 κ. ἀλλ.˙ ὁ [[ἄξων]] σφαίρας, ὁ αὐτ. π. Ζῴων Κιν. 3, 4, κτλ. ΙΙ. κανὼν πρὸς διαγραφὴν τῆς διαμέτρου, Ἀριστοφ. Βατρ. 801.
}}
}}