Anonymous

ἐνθύμημα: Difference between revisions

From LSJ
m
no edit summary
m (Text replacement - "μετὰ" to "μετὰ")
mNo edit summary
Line 8: Line 8:
|Transliteration C=enthymima
|Transliteration C=enthymima
|Beta Code=e)nqu/mhma
|Beta Code=e)nqu/mhma
|Definition=ατος, τό, <span class="sense"><span class="bld">A</span> [[thought]], [[piece of reasoning]], [[argument]], <span class="bibl">S.<span class="title">OC</span>292</span>,<span class="bibl">1199</span>, <span class="bibl">Isoc.9.10</span> (pl.), <span class="bibl">Aeschin.2.110</span>. </span><span class="sense"><span class="bld">2</span> [[meaning]], [[sense]], opp. [[λέξις]], <span class="bibl">Olymp.<span class="title">in Mete.</span>4.23</span>. </span><span class="sense"><span class="bld">3</span> in Aristotle's Logic, <b class="b2">enthymeme, rhetorical syllogism drawn from probable premises</b> (ἐξ εἰκότων ἢ σημείων), opp. <b class="b3">ἀποδεικτικὸς συλλογισμός</b>, <span class="title">APr.</span>70a10, cf.<span class="title">Rh.</span> 1355a6, etc.; <b class="b3">ἐ. δεικτικά, ἐλεγκτικά</b>, ib.1396b24. </span><span class="sense"><span class="bld">II</span> [[invention]], [[device]], <span class="bibl">X.<span class="title">HG</span>4.5.4</span>, <span class="bibl">5.4.52</span>, <span class="bibl"><span class="title">An.</span>3.5.12</span>, <span class="bibl"><span class="title">Cyn.</span>13.13</span> (pl.), <span class="bibl">Men.<span class="title">Epit.</span> 295</span>.</span>
|Definition=ατος, τό, <span class="sense"><span class="bld">A</span> [[thought]], [[piece]] of [[reasoning]], [[argument]], <span class="bibl">S.<span class="title">OC</span>292</span>,<span class="bibl">1199</span>, <span class="bibl">Isoc.9.10</span> (pl.), <span class="bibl">Aeschin.2.110</span>. </span><span class="sense"><span class="bld">2</span> [[meaning]], [[sense]], opp. [[λέξις]], <span class="bibl">Olymp.<span class="title">in Mete.</span>4.23</span>. </span><span class="sense"><span class="bld">3</span> in Aristotle's Logic, [[enthymeme]], [[rhetorical]] [[syllogism]] drawn from [[probable]] [[premises]] (ἐξ εἰκότων ἢ σημείων), opp. ἀποδεικτικὸς [[συλλογισμός]], <span class="title">APr.</span>70a10, cf.<span class="title">Rh.</span> 1355a6, etc.; <b class="b3">ἐνθυμήματα δεικτικά, ἐνθυμήματα ἐλεγκτικά</b>, ib.1396b24. </span><span class="sense"><span class="bld">II</span> [[invention]], [[device]], <span class="bibl">X.<span class="title">HG</span>4.5.4</span>, <span class="bibl">5.4.52</span>, <span class="bibl"><span class="title">An.</span>3.5.12</span>, <span class="bibl"><span class="title">Cyn.</span>13.13</span> (pl.), <span class="bibl">Men.<span class="title">Epit.</span> 295</span>.</span>
}}
}}
{{pape
{{pape
Line 34: Line 34:
|mdlsjtxt=[[ἐνθύμημα]], ατος, τό, [from ἐνθῡμέομαι]<br /><b class="num">I.</b> a [[thought]], [[piece]] of [[reasoning]], [[argument]], Soph., Aeschin.<br /><b class="num">II.</b> an [[invention]], [[device]], Xen.
|mdlsjtxt=[[ἐνθύμημα]], ατος, τό, [from ἐνθῡμέομαι]<br /><b class="num">I.</b> a [[thought]], [[piece]] of [[reasoning]], [[argument]], Soph., Aeschin.<br /><b class="num">II.</b> an [[invention]], [[device]], Xen.
}}
}}
==Wikipedia EN==
An [[enthymeme]] (Greek: [[ἐνθύμημα]], enthumēma) is a rhetorical syllogism used in oratorical practice. Originally theorized by Aristotle, there are four types of enthymeme, at least two of which are described in Aristotle's work.
Aristotle referred to the enthymeme as "the body of proof", "the strongest of rhetorical proofs...a kind of syllogism" (Rhetoric I, 1.3,11). He considered it to be one of two kinds of proof, the other of which was the paradeigma. Maxims, Aristotle thought, were a derivative of enthymemes. (Rhetoric II.XX.1)
==Translations==
az: entimema; bg: ентимема; ca: entimema; cs: entyméma; de: Enthymem; en: enthymeme; es: entimema; et: entümeem; fr: enthymème; he: החבר; hu: entiméma; id: entimem; io: entimemo; it: entimema; ja: 省略三段論法; ky: энтимема; nl: enthymeem; pl: wnioskowanie entymematyczne; ru: энтимема; sh: entimem; sk: entyméma; sr: ентимем; sv: entymem; th: ตรรกบทย่อ; uk: ентимема