Anonymous

ἔλλειψις: Difference between revisions

From LSJ
m
no edit summary
m (Text replacement - "<br /><br />" to "<br />")
mNo edit summary
Line 8: Line 8:
|Transliteration C=elleipsis
|Transliteration C=elleipsis
|Beta Code=e)/lleiyis
|Beta Code=e)/lleiyis
|Definition=εως, ἡ, <span class="sense"><span class="bld">A</span> [[falling short]], [[defect]], opp. [[ὑπερβολή]], <span class="bibl">Democr. 102</span>, <span class="bibl">Pl.<span class="title">Prt.</span>356a</span>; opp. [[ὑπεροχή]], <span class="bibl">Arist.<span class="title">Ph.</span>187a17</span>, <span class="bibl"><span class="title">Metaph.</span>1042b25</span>; ὑπερβολὴ καὶ ἔ. καὶ τὸ μέσον <span class="bibl">Id.<span class="title">EN</span>1106b17</span>. </span><span class="sense"><span class="bld">2</span> [[the conic section ellipse]], <span class="bibl">Apollon.Perg.<span class="title">Con.</span>1.13</span> (so called because the square on the ordinate is equal to a rectangle with height equal to the abscissa and applied to the parameter, but [[falling short]] of it). </span><span class="sense"><span class="bld">3</span> <b class="b3">ἐν ἐλλείψεσιν ἐνυπάρχειν</b> to be present in [[deficiency]], of the negative terms in an algebraical expression, <span class="bibl">Dioph.1</span><span class="title">Praef.</span>p.14 T. </span><span class="sense"><span class="bld">4</span> Gramm., [[ellipse]], <span class="bibl">Ath. 14.644a</span>, <span class="bibl">A.D.<span class="title">Synt.</span>117.19</span>; [[omission]] of a letter, <span class="bibl">Id.<span class="title">Pron.</span>56.28</span>. </span><span class="sense"><span class="bld">5</span> = [[ἔκλειψις]], <span class="bibl">Olymp.<span class="title">in Mete.</span>67.37</span> (s.v.l.). </span><span class="sense"><span class="bld">6</span> Pythag.name for [[two]], Theol.Ar.10.</span>
|Definition=εως, ἡ,<br><span class="bld">A</span> [[falling short]], [[defect]], opp. [[ὑπερβολή]], Democr. 102, Pl.Prt.356a; opp. [[ὑπεροχή]], Arist.Ph.187a17, Metaph.1042b25; ὑπερβολὴ καὶ ἔλλειψις καὶ τὸ [[μέσον]] Id.EN1106b17.<br><span class="bld">2</span> the [[conic]] [[section]] [[ellipse]], Apollon.Perg.Con.1.13 (so called because the [[square]] on the [[ordinate]] is [[equal]] to a [[rectangle]] with height equal to the [[abscissa]] and applied to the [[parameter]], but [[fall]]ing [[short]] of it).<br><span class="bld">3</span> ἐν ἐλλείψεσιν ἐνυπάρχειν to be [[present]] in [[deficiency]], of the [[negative]] [[term]]s in an [[algebraical]] [[expression]], Dioph.1Praef.p.14 T.<br><span class="bld">4</span> Gramm., [[ellipse]], Ath. 14.644a, A.D.Synt.117.19; [[omission]] of a [[letter]], Id.Pron.56.28.<br><span class="bld">5</span> = [[ἔκλειψις]], Olymp.in Mete.67.37 (s.v.l.).<br><span class="bld">6</span> Pythag.name for [[two]], Theol.Ar.10.
}}
}}
{{pape
{{pape