γεωμετρικός: Difference between revisions
m (Text replacement - "cf. <b class="b3">([^\s-\.]*?[αΑάΆΒβΓγΔδεΕέΈΖζηΗήΉΘθιΙίΊϊΪΐΚκΛλΜμΝνΞξοΟςόΌΠπΡρΣσΤτυΥυύΎϋΫΰΦφΧχΨψωΩώΏ]+?[^\s-\.]*?)<\/b>" to "cf. $1") |
(13_5) |
||
Line 9: | Line 9: | ||
|Beta Code=gewmetriko/s | |Beta Code=gewmetriko/s | ||
|Definition=ή, όν, <span class="sense"><p> <span class="bld">A</span> <b class="b2">of</b> or <b class="b2">for geometry, geometrical</b>, ἀριθμός <span class="bibl">Pl.<span class="title">R.</span>546c</span>, etc.; ἰσότης <span class="bibl">Id.<span class="title">Grg.</span>508a</span>; ἀναλογία <span class="bibl">Arist.<span class="title">EN</span>1131b13</span>; <b class="b3">μεσότης</b> Theo Sm.<span class="bibl">p.106</span> H., etc. (cf. [[γαμετρικός]]) ; ἁρμονία <span class="bibl">Nicom.<span class="title">Ar.</span>2.26</span>; θεωρήματα Plu.2.720a (Sup.); <b class="b3">γεωμετρική</b> (sc. <b class="b3">τέχνη</b>), <b class="b2">geometry</b>, <span class="bibl">Pl.<span class="title">Grg.</span>450d</span>, <span class="bibl">Nicom.Com.1.18</span>; <b class="b3">τὰ -κά</b> title of work on <b class="b2">geometry</b>, <span class="bibl">Democr.11n</span>, cf. <span class="bibl">Arist.<span class="title">APo.</span>79a9</span>. Adv. <b class="b3">-κῶς</b> <b class="b2">by a rigidly deductive proof</b>, <span class="bibl">Procl.<span class="title">in Prm.</span>p.897</span> S., Id.<span class="title">in Ti.</span>1.345 D.: <b class="b3">γ</b>. <b class="b2">refellere</b>, prove wrong <b class="b2">to demonstration</b>, <span class="bibl">Cic.<span class="title">Att.</span>12.5.3</span>. </span><span class="sense"> <span class="bld">II</span> <b class="b2">skilled in geometry</b>, <span class="bibl">Pl.<span class="title">R.</span>511d</span>, Plu.2.579b, <span class="bibl">Arist.<span class="title">Pol.</span> 1282a9</span>; <b class="b3">γ. Βριάρεως</b>, of Archimedes, Id.<span class="title">Marc.</span>17: Comp. -ώτερος <span class="bibl">Ph.1.621</span>. Adv. -κῶς <span class="bibl">Arist.<span class="title">Top.</span>161a35</span>, <span class="bibl">Str.2.1.41</span>, Plu.2.643c.</span> | |Definition=ή, όν, <span class="sense"><p> <span class="bld">A</span> <b class="b2">of</b> or <b class="b2">for geometry, geometrical</b>, ἀριθμός <span class="bibl">Pl.<span class="title">R.</span>546c</span>, etc.; ἰσότης <span class="bibl">Id.<span class="title">Grg.</span>508a</span>; ἀναλογία <span class="bibl">Arist.<span class="title">EN</span>1131b13</span>; <b class="b3">μεσότης</b> Theo Sm.<span class="bibl">p.106</span> H., etc. (cf. [[γαμετρικός]]) ; ἁρμονία <span class="bibl">Nicom.<span class="title">Ar.</span>2.26</span>; θεωρήματα Plu.2.720a (Sup.); <b class="b3">γεωμετρική</b> (sc. <b class="b3">τέχνη</b>), <b class="b2">geometry</b>, <span class="bibl">Pl.<span class="title">Grg.</span>450d</span>, <span class="bibl">Nicom.Com.1.18</span>; <b class="b3">τὰ -κά</b> title of work on <b class="b2">geometry</b>, <span class="bibl">Democr.11n</span>, cf. <span class="bibl">Arist.<span class="title">APo.</span>79a9</span>. Adv. <b class="b3">-κῶς</b> <b class="b2">by a rigidly deductive proof</b>, <span class="bibl">Procl.<span class="title">in Prm.</span>p.897</span> S., Id.<span class="title">in Ti.</span>1.345 D.: <b class="b3">γ</b>. <b class="b2">refellere</b>, prove wrong <b class="b2">to demonstration</b>, <span class="bibl">Cic.<span class="title">Att.</span>12.5.3</span>. </span><span class="sense"> <span class="bld">II</span> <b class="b2">skilled in geometry</b>, <span class="bibl">Pl.<span class="title">R.</span>511d</span>, Plu.2.579b, <span class="bibl">Arist.<span class="title">Pol.</span> 1282a9</span>; <b class="b3">γ. Βριάρεως</b>, of Archimedes, Id.<span class="title">Marc.</span>17: Comp. -ώτερος <span class="bibl">Ph.1.621</span>. Adv. -κῶς <span class="bibl">Arist.<span class="title">Top.</span>161a35</span>, <span class="bibl">Str.2.1.41</span>, Plu.2.643c.</span> | ||
}} | |||
{{pape | |||
|ptext=[[https://www.translatum.gr/images/pape/pape-01-0488.png Seite 488]] ή, όν, zum Land-, Feldmessen gehörig; ἡ γ., sc. [[τέχνη]], Geometrie, Feldmeßkunst, Plat. Gorg. 450 d u. öfter; ὁ γ., der in der Geometrie erfahren ist, Theaet. 145 a u. öfter; auch Sp., wie Plut. Marcell. 17; γεωμετρικώτατον [[θεώρημα]] Symp. 8, 2, 4. – Adv., auf geometrische Art, Cic. Att. 12, 5. | |||
}} | }} |
Revision as of 19:10, 2 August 2017
English (LSJ)
ή, όν,
A of or for geometry, geometrical, ἀριθμός Pl.R.546c, etc.; ἰσότης Id.Grg.508a; ἀναλογία Arist.EN1131b13; μεσότης Theo Sm.p.106 H., etc. (cf. γαμετρικός) ; ἁρμονία Nicom.Ar.2.26; θεωρήματα Plu.2.720a (Sup.); γεωμετρική (sc. τέχνη), geometry, Pl.Grg.450d, Nicom.Com.1.18; τὰ -κά title of work on geometry, Democr.11n, cf. Arist.APo.79a9. Adv. -κῶς by a rigidly deductive proof, Procl.in Prm.p.897 S., Id.in Ti.1.345 D.: γ. refellere, prove wrong to demonstration, Cic.Att.12.5.3. II skilled in geometry, Pl.R.511d, Plu.2.579b, Arist.Pol. 1282a9; γ. Βριάρεως, of Archimedes, Id.Marc.17: Comp. -ώτερος Ph.1.621. Adv. -κῶς Arist.Top.161a35, Str.2.1.41, Plu.2.643c.
German (Pape)
[Seite 488] ή, όν, zum Land-, Feldmessen gehörig; ἡ γ., sc. τέχνη, Geometrie, Feldmeßkunst, Plat. Gorg. 450 d u. öfter; ὁ γ., der in der Geometrie erfahren ist, Theaet. 145 a u. öfter; auch Sp., wie Plut. Marcell. 17; γεωμετρικώτατον θεώρημα Symp. 8, 2, 4. – Adv., auf geometrische Art, Cic. Att. 12, 5.