ὑπεπιμόριος: Difference between revisions
κάλλιστον ἐφόδιον τῷ γήρᾳ ἡ παιδεία (Aristotle, quoted by Diogenes Laertius 5.21) → the finest provision for old age is education
m (Text replacement - "(*UTF)(*UCP)<b class="b3">(\w+)<\/b>" to "$1") |
|||
Line 8: | Line 8: | ||
|Transliteration C=ypepimorios | |Transliteration C=ypepimorios | ||
|Beta Code=u(pepimo/rios | |Beta Code=u(pepimo/rios | ||
|Definition=ον, an arithmetical term, the reciprocal of [[ἐπιμόριος]], represented by the fraction 1/(1 + 1/n) or n/(n + 1), <span class="bibl">Arist.<span class="title">Metaph.</span> 1021a2</span>:—so ὑφημιόλιος is the reciprocal of [[ἡμιόλιος]] (<span class="bibl">2</span>/<span class="bibl">3</span> of <span class="bibl">3</span>/<span class="bibl">2</span>), ὑπεπίτριτος of [[ἐπίτριτος]] (<span class="bibl">3</span>/<span class="bibl">4</span> of <span class="bibl">4</span>/<span class="bibl">3</span>), ὑπεπιτέταρτος of [[ἐπιτέταρτος]] (<span class="bibl">4</span>/<span class="bibl">5</span> of <span class="bibl">5</span>/<span class="bibl">4</span>), ὑπεπόγδοος of [[ἐπόγδοος]] (<span class="bibl">8</span>/<span class="bibl">9</span> of <span class="bibl">9</span>/<span class="bibl">8</span>), etc., <span class="bibl">Nicom.<span class="title">Ar.</span>1.19</span>, <span class="bibl"><span class="title">Exc.</span>2</span>, Theo Sm.<span class="bibl">p.75</span> H., etc.; and so ὑπεπιμερής is the reciprocal of [[ἐπιμερής]], Nicom.<span class="title">Ar.</span>l.c.—These ratios are called | |Definition=ον, an arithmetical term, the reciprocal of [[ἐπιμόριος]], represented by the fraction 1/(1 + 1/n) or n/(n + 1), <span class="bibl">Arist.<span class="title">Metaph.</span> 1021a2</span>:—so ὑφημιόλιος is the reciprocal of [[ἡμιόλιος]] (<span class="bibl">2</span>/<span class="bibl">3</span> of <span class="bibl">3</span>/<span class="bibl">2</span>), ὑπεπίτριτος of [[ἐπίτριτος]] (<span class="bibl">3</span>/<span class="bibl">4</span> of <span class="bibl">4</span>/<span class="bibl">3</span>), ὑπεπιτέταρτος of [[ἐπιτέταρτος]] (<span class="bibl">4</span>/<span class="bibl">5</span> of <span class="bibl">5</span>/<span class="bibl">4</span>), ὑπεπόγδοος of [[ἐπόγδοος]] (<span class="bibl">8</span>/<span class="bibl">9</span> of <span class="bibl">9</span>/<span class="bibl">8</span>), etc., <span class="bibl">Nicom.<span class="title">Ar.</span>1.19</span>, <span class="bibl"><span class="title">Exc.</span>2</span>, Theo Sm.<span class="bibl">p.75</span> H., etc.; and so ὑπεπιμερής is the reciprocal of [[ἐπιμερής]], Nicom.<span class="title">Ar.</span>l.c.—These ratios are called [[ὑπόλογοι]], [[ἐπιμόριος]] etc. being [[πρόλογοι]]. | ||
}} | }} | ||
{{ls | {{ls |
Revision as of 16:40, 1 January 2021
English (LSJ)
ον, an arithmetical term, the reciprocal of ἐπιμόριος, represented by the fraction 1/(1 + 1/n) or n/(n + 1), Arist.Metaph. 1021a2:—so ὑφημιόλιος is the reciprocal of ἡμιόλιος (2/3 of 3/2), ὑπεπίτριτος of ἐπίτριτος (3/4 of 4/3), ὑπεπιτέταρτος of ἐπιτέταρτος (4/5 of 5/4), ὑπεπόγδοος of ἐπόγδοος (8/9 of 9/8), etc., Nicom.Ar.1.19, Exc.2, Theo Sm.p.75 H., etc.; and so ὑπεπιμερής is the reciprocal of ἐπιμερής, Nicom.Ar.l.c.—These ratios are called ὑπόλογοι, ἐπιμόριος etc. being πρόλογοι.
Greek (Liddell-Scott)
ὑπεπιμόριος: -ον, ἀριθμητικὸς ὅρος, ἀντίστροφος τῷ ἐπιμόριος, παριστανόμενος διὰ τοῦ κλάσματος, x / x-1, ὡς ἀντίστοφον τῷ x-1 / x, Ἀριστ. Μετὰ τὰ Φυσ. 4. 15, 3, ἔνθα ἴδε Bonitz.· οὕτως ὑφημιόλιος εἶναι τὸ ἀντίστροφον τοῦ ἡμιόλιος (2/3 καὶ 3/2), ὑπεπίτριτος τοῦ ἐπίτριτος (2/3 καὶ 3/2), ὑπεπιτέταρτος τοῦ ἐπιτέταρτος (3/4 καὶ 4/3),κτλ.· οὕτω καὶ ὑπεπιμερὴς εἶναι ἀντίστροφον τοῦ ἐπιμερής, ἴδε Νικομ. Ἀριθμ. 1. 19. - Οἱ λόγοι οὗτοι καλοῦνται ὑπόλογοι, τὰ δὲ ἐπιμόριος κτλ. καλοῦνται πρόλογοι.
Greek Monolingual
και ὑποεπιμόριος, -ον, Α
(για αριθμό) αντίστροφος του ἐπιμόριος, που παριστάνεται με το κλάσμα x/x-1 ως αντίστροφο του x-1/x.
[ΕΤΥΜΟΛ. < ὑπ(ο)- + ἐπιμόριος «αριθμός που περιέχει ένα ακέραιο κλάσμα με αριθμητή τη μονάδα»].
Russian (Dvoretsky)
ὑπεπιμόριος: мат. находящийся в обратном отношении (sc. ἀριθμός Arst.; так, напр., если 3 есть ἐπιμόριος по отношению к 2, то 2 есть ὑ. по отношению к 3).