εἰδητικός: Difference between revisions
Τὸ νικᾶν αὐτὸν αὑτὸν πασῶν νικῶν πρώτη τε καὶ ἀρίστη. Τὸ δὲ ἡττᾶσθαι αὐτὸν ὑφ' ἑαυτοῦ πάντων αἴσχιστόν τε ἅμα καὶ κάκιστον. → Τo conquer yourself is the first and best victory of all, while to be conquered by yourself is of all the most shameful as well as evil
m (Text replacement - "q.v." to "q.v.") |
|||
Line 8: | Line 8: | ||
|Transliteration C=eiditikos | |Transliteration C=eiditikos | ||
|Beta Code=ei)dhtiko/s | |Beta Code=ei)dhtiko/s | ||
|Definition=ή, όν, <span class="sense"><span class="bld">A</span> [[constituting an]] εἶδος <span class="bibl">111.2</span>, [[ἀριθμός]], opp. [[μαθηματικός]], <span class="bibl">Arist.<span class="title">Metaph.</span>1086a5</span>, <span class="bibl">1088b34</span> (but later <b class="b3">εἰ. ἀριθμός</b> | |Definition=ή, όν, <span class="sense"><span class="bld">A</span> [[constituting an]] εἶδος <span class="bibl">111.2</span>, [[ἀριθμός]], opp. [[μαθηματικός]], <span class="bibl">Arist.<span class="title">Metaph.</span>1086a5</span>, <span class="bibl">1088b34</span> (but later <b class="b3">εἰ. ἀριθμός</b> [[capable of being represented by a geometrical pattern]], [[figurate]], <span class="bibl">Iamb. <span class="title">Comm.Math.</span>19</span>); [[formal]], αἰτία Alex. Aphr.<span class="title">in Metaph.</span>124.9, <span class="bibl">Procl.<span class="title">Inst.</span>178</span>; αἴτια <span class="bibl">Olymp.<span class="title">in Mete.</span>302.28</span>; opp. [[εἰδητός]] ([[quod vide|q.v.]]), <span class="bibl">Dam.<span class="title">Pr.</span>81</span>. </span><span class="sense"><span class="bld">2</span> [[concerned with]] [[εἴδη]], [[νόησις]] ib.<span class="bibl">5</span>; [[ἀποδείξεις]] ibid.; [[specific]], <span class="bibl">Alex.Aphr.<span class="title">in Metaph.</span>113.6</span>. </span><span class="sense"><span class="bld">II</span> Adv. -κῶς <span class="bibl">Dam.<span class="title">Pr.</span>284</span>,<span class="bibl">321</span>, <span class="bibl">Procl.<span class="title">in Prm.</span>pp.625,649</span> S.</span> | ||
}} | }} | ||
{{pape | {{pape |
Revision as of 16:25, 20 August 2022
English (LSJ)
ή, όν, A constituting an εἶδος 111.2, ἀριθμός, opp. μαθηματικός, Arist.Metaph.1086a5, 1088b34 (but later εἰ. ἀριθμός capable of being represented by a geometrical pattern, figurate, Iamb. Comm.Math.19); formal, αἰτία Alex. Aphr.in Metaph.124.9, Procl.Inst.178; αἴτια Olymp.in Mete.302.28; opp. εἰδητός (q.v.), Dam.Pr.81. 2 concerned with εἴδη, νόησις ib.5; ἀποδείξεις ibid.; specific, Alex.Aphr.in Metaph.113.6. II Adv. -κῶς Dam.Pr.284,321, Procl.in Prm.pp.625,649 S.
German (Pape)
[Seite 723] = εἰδήμων, B. A. p. 1366, aus Damascius.
Greek (Liddell-Scott)
εἰδητικός: -ή, -όν, ἐπιστημονικός, Σχόλ. εἰς Ἀριστ. Μετὰ τὰ Φυσικ. 305. 336, Brandis. - Ἐπίρρ. εἰδητικῶς Πρόκλ. εἰς Παρμεν. Πλάτ. σ. 625. 649, ἔκδ. Stallb.
Spanish (DGE)
-ή, -ον
I 1relativo a la idea platónica, ideal τὸν αὐτὸν εἰδητικὸν καὶ μαθηματικὸν ἐποίησαν ἀριθμόν identificaron el número ideal con el matemático Arist.Metaph.1086a8, cf. 1088b34, 1090b35, τὸ δὲ καλὸν ἐραστὸν εἰδητικόν la belleza es el objeto ideal del amor Dam.in Phlb.16, τὸ ἕν Dam.Pr.25.
2 formal αἰτία Alex.Aphr.in Metaph.124.9, Procl.Inst.178, εἰδητικὴ τῶν ἀριθμῶν διαφορά Alex.Aphr.in Metaph.113.6, τὸ ὄν Dam.Pr.58, ἀριθμός Dam.Pr.89, λόγος Dam.in Phlb.62.
3 específico παραλλαγὰς ἔχουσα εἰδητικάς (ἡ ψυχή) Porph.Sent.37, νόησις Dam.Pr.5, ἀποδείξεις Dam.Pr.5, φύσις Dam.Pr.87, οὐσία Procl.in Prm.729, διαφοραί Iambl.Comm.Math.2.
4 capaz de conocer εἰ. op. εἰδητός dicho del νοῦς como forma, Dam.Pr.81, εἰδικοὶ ἢ εἰδητικοί (δαίμονες) identificados con facultades anímicas, Olymp.in Alc.18.
5 que puede ser representado por una figura geométrica ἀριθμός Iambl.Comm.Math.19.
II adv. -ῶς
1 de forma ideal, idealmente op. οὐσιωδῶς Dam.in Prm.284, cf. 321.
2 de manera específica ἑναδικῶς καὶ εἰ. Procl.in Prm.805, cf. 836.
Greek Monolingual
-ή, -ό (Α εἰδητικός, -ή, -όν)
αρχ.
1. αυτός που αποτελεί το είδος
2. ειδικός
νεοελλ.
αυτός που αναφέρεται στην αισθητοποίηση τών αναμνήσεων ώστε να προβάλλονται ως πραγματικές εικόνες.